low emittance
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 43)

H-INDEX

26
(FIVE YEARS 3)

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Jinxin Gu ◽  
Xin Zhao ◽  
Feifei Ren ◽  
Hang Wei ◽  
Shuhui Liang ◽  
...  

A metal layer with high reflectance is widely used as the bottom mirror of smart radiation devices. Reduced solar absorption and enhanced emittance tunability are required for smart radiation devices applied in aerospace. Thus, reducing the absorption in the metal is also necessary. Here, Al films have been prepared by direct current magnetron sputtering on the fused silica substrate. The structure, morphology, and optical properties of the films have been analyzed at various deposition temperatures and deposition times. The spectrum absorption tends to increase with the increase of surface roughness due to the agglomeration and size increase of Al particles, which has been further demonstrated by the simulated results. The optimized Al film exhibits small solar absorption of 0.14 and low emittance of 0.02, which benefits the application for smart radiation devices and solar reflectors.


2021 ◽  
Vol 32 (12) ◽  
Author(s):  
Zhe Duan ◽  
Jin-Hui Chen ◽  
Hua Shi ◽  
Guang-Yi Tang ◽  
Lei Wang ◽  
...  

AbstractThe High Energy Photon Source (HEPS) is a 6 GeV diffraction-limited storage ring light source under construction. The swap-out injection is adopted with the depleted bunch recycled via high-energy accumulation in the booster. The extremely high beam energy density of the bunches with an ultra-low emittance (about 30 pm horizontally and 3 pm vertically) and high bunch charges (from 1.33 to 14.4 nC) extracted from the storage ring could cause hazardous damage to the extraction Lambertson magnet in case of extraction kicker failure. To this end, we proposed the use of a pre-kicker to spoil the bunches prior to extraction, significantly reducing the maximum beam energy density down to within a safe region while still maintaining highly efficient extractions. The main parameters of the pre-kicker are simulated and discussed.


2021 ◽  
Vol 11 (22) ◽  
pp. 10768
Author(s):  
Ye Chen ◽  
Frank Brinker ◽  
Winfried Decking ◽  
Matthias Scholz ◽  
Lutz Winkelmann

Sub-ångström working regime refers to a working state of free-electron lasers which allows the generation of hard X-rays at a photon wavelength of 1 ångström and below, that is, a photon energy of 12.5 keV and above. It is demonstrated that the accelerators of the European X-ray Free-Electron Laser can provide highly energetic electron beams of up to 17.5 GeV. Along with long variable-gap undulators, the facility offers superior conditions for exploring self-amplified spontaneous emission (SASE) in the sub-ångström regime. However, the overall FEL performance relies quantitatively on achievable electron beam qualities through a kilometers-long accelerator beamline. Low-emittance electron beam production and the associated start-to-end beam physics thus becomes a prerequisite to dig in the potentials of SASE performance towards higher photon energies. In this article, we present the obtained results on electron beam qualities produced with different accelerating gradients of 40 MV/m–56 MV/m at the cathode, as well as the final beam qualities in front of the undulators via start-to-end simulations considering realistic conditions. SASE studies in the sub-ångström regime, using optimized electron beams, are carried out at varied energy levels according to the present state of the facility, that is, a pulsed mode operating with a 10 Hz-repetition 0.65 ms-long bunch train energized to 14 GeV and 17.5 GeV. Millijoule-level SASE intensity is obtained at a photon energy of 25 keV at 14 GeV electron beam energy using a gain length of about 7 m. At 17.5 GeV, half-millijoule lasing is achieved at 40 keV. Lasing at up to 50 keV is demonstrated with pulse energies in the range of a few hundreds and tens of microjoules with existing undulators and currently achievable electron beam qualities.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Takuo Ohkochi ◽  
Takayuki Muro ◽  
Eiji Ikenaga ◽  
Kazuaki Togawa ◽  
Akira Yasui ◽  
...  

The CeB6(001) single crystal used as a cathode in a low-emittance electron gun and operated at the free-electron laser facility SACLA was investigated using cathode lens electron microscopy combined with X-ray spectroscopy at SPring-8 synchrotron radiation facility. Multilateral analysis using thermionic emission electron microscopy, low-energy electron microscopy, ultraviolet and X-ray photoemission electron microscopy and hard X-ray photoemission spectroscopy revealed that the thermionic electrons are emitted strongly and evenly from the CeB6 surface after pre-activation treatment (annealing at 1500°C for >1 h) and that the thermionic emission intensity as well as elemental composition vary between the central area and the edge of the old CeB6 surface.


Author(s):  
Anna Soter ◽  
Andreas Knecht

A high-intensity, low-emittance atomic muonium (M =\mu^+ + e^-=μ++e−) beam is being developed, which would enable improving the precision of M spectroscopy measurements, and may allow a direct observation of the M gravitational interaction. Measuring the free fall of M atoms would be the first test of the weak equivalence principle using elementary antimatter (\mu^+μ+) and a purely leptonic system. Such an experiment relies on the high intensity, continuous muon beams available at the Paul Scherrer Institute (PSI, Switzerland), and a proposed novel M source. In this paper, the theoretical motivation and principles of this experiment are described.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
C. Houghton ◽  
C. Bloomer ◽  
L. Alianelli

A method to simulate beam properties observed at the beamline sample-point in the presence of motion of optical components has been developed at Diamond Light Source. A series of stationary ray-tracing simulations are used to model the impact on the beam stability caused by dynamic motion of optical elements. Ray-tracing simulations using SHADOW3 in OASYS, completed over multiple iterations and stitched together, permit the modelling of a pseudo-dynamic beamline. As beamline detectors operating at higher frequencies become more common, beam stability is crucial. Synchrotron ring upgrades to low-emittance lattices require increased stability of beamlines in order to conserve beam brightness. By simulating the change in beam size and position, an estimate of the impact the motion of various components have on stability is possible. The results presented in this paper focus on modelling the physical vibration of optical elements. Multiple beam parameters can be analysed in succession without manual input. The simulation code is described and the initial results obtained are presented. This method can be applied during beamline design and operation for the identification of optical elements that may introduce large errors in the beam properties at the sample-point.


Sign in / Sign up

Export Citation Format

Share Document