Intelligent processing and analysis of groups of multispectral images

Author(s):  
Stuart Rubin ◽  
Roumen Kountchev ◽  
Mariofanna Milanova ◽  
Roumiana Kountcheva
1993 ◽  
Vol 32 (04) ◽  
pp. 272-273 ◽  
Author(s):  
A. L. Rector

Response to: Essin DJ. Intelligent processing of loosely structured documents as a strategy for organizing electronic health care records. Meth Inform Med 1993; 32: 265.


1993 ◽  
Vol 32 (04) ◽  
pp. 265-268 ◽  
Author(s):  
D. J. Essin

AbstractLoosely structured documents can capture more relevant information about medical events than is possible using today’s popular databases. In order to realize the full potential of this increased information content, techniques will be required that go beyond the static mapping of stored data into a single, rigid data model. Through intelligent processing, loosely structured documents can become a rich source of detailed data about actual events that can support the wide variety of applications needed to run a health-care organization, document medical care or conduct research. Abstraction and indirection are the means by which dynamic data models and intelligent processing are introduced into database systems. A system designed around loosely structured documents can evolve gracefully while preserving the integrity of the stored data. The ability to identify and locate the information contained within documents offers new opportunities to exchange data that can replace more rigid standards of data interchange.


1999 ◽  
Author(s):  
H. T. Hahn ◽  
M. Kang ◽  
M. Lin ◽  
D. Shin ◽  
F. Sonmez

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1994
Author(s):  
Qian Ma ◽  
Wenting Han ◽  
Shenjin Huang ◽  
Shide Dong ◽  
Guang Li ◽  
...  

This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with fragmentary plots and a high-complexity planting structure, as the planting structure complexity changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures.


Sign in / Sign up

Export Citation Format

Share Document