Strong Carrier Temperature Dependence of Complex THz Conductivity of Photo-excited Graphene due to electron-phonon coupling

Author(s):  
Masatsugu Yamashita ◽  
Sho Ikeda ◽  
Chiko Otani
2019 ◽  
Vol 97 (5) ◽  
pp. 472-476
Author(s):  
Samin Tajik ◽  
Božidar Mitrović ◽  
Frank Marsiglio

Using the Eliashberg theory of superconductivity we have examined several properties of a model in which electrons are coupled only to rattling phonon modes represented by a sharp peak in the electron–phonon coupling function. Our choice of parameters was guided by experiments on β-pyrochlore oxide superconductor KOs2Os6. We have calculated the temperature dependence of the superconducting gap edge; the quasi-particle decay rate; the NMR relaxation rate assuming that the coupling between the nuclear spins and the conduction electrons is via a contact hyperfine interaction, which would be appropriate for the O-site in KOs2Os6; and the microwave conductivity. We examined the limit of very strong coupling by considering three values of the electron–phonon coupling parameter λ = 2.38, 3, and 5 and did not assume that the rattler frequency Ω0 is temperature dependent in the superconducting state. We obtained a very unusual temperature dependence of the superconducting gap edge Δ(T), very much like the one extracted from photoemission experiments on KOs2O6.


2014 ◽  
Vol 141 (15) ◽  
pp. 154110 ◽  
Author(s):  
Claudia Roos ◽  
Andreas Köhn ◽  
Jürgen Gauss ◽  
Gregor Diezemann

2018 ◽  
Vol 55 (5) ◽  
pp. 15-25 ◽  
Author(s):  
Y. Tiandho ◽  
W. Sunanda ◽  
F. Afriani ◽  
A. Indriawati ◽  
T. P. Handayani

Abstract In many experiments, it has been reported that the performance of solar cells decreases with increasing temperature. This effect arises due to an increase in the intrinsic carrier concentration of material that directly affects the reverse saturation currents (J0). As a result, the open circuit voltage which is inversely proportional to J0 will decrease quite rapidly with increasing temperature. The intrinsic carrier concentration is determined by the bandgap energy of a material and its temperature. The Varshni relationship is a relation for the variation of the bandgap energy with temperature in semiconductors that has been used extensively in the model of a solar cell performance. But the problem is the Varshni relation just calculates the contribution of the vibrational part at the temperature, which is much greater than the Debye temperature. These works proposed a model of temperature dependence of solar cell performance that involves phonon energy correction and electron-phonon coupling interaction. This correction is applied because the electron-phonon coupling interaction is an intrinsic interaction of semiconductors. The existence of interaction cannot be avoided either experimentally or theoretically. The proposed model is compared with experimental data, which have fairly high accuracy.


1994 ◽  
Vol 58 (1-6) ◽  
pp. 168-171 ◽  
Author(s):  
T. Pullerits ◽  
F. van Mourik ◽  
R. Monshouwer ◽  
R.W. Visschers ◽  
R. van Grondelle

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
Rishabh Saxena ◽  
Jiban Kangsabanik ◽  
Ayush Kumar ◽  
Aga Shahee ◽  
Shivam Singh ◽  
...  

2021 ◽  
Vol 12 (6) ◽  
pp. 1690-1695
Author(s):  
Zhongyu Liu ◽  
Yingwei Li ◽  
Wonyong Shin ◽  
Rongchao Jin

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
I.Yu. Sklyadneva ◽  
R. Heid ◽  
P. M. Echenique ◽  
E. V. Chulkov

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Su ◽  
Zhaojian Xu ◽  
Jiang Wu ◽  
Deying Luo ◽  
Qin Hu ◽  
...  

AbstractThe performance of perovskite photovoltaics is fundamentally impeded by the presence of undesirable defects that contribute to non-radiative losses within the devices. Although mitigating these losses has been extensively reported by numerous passivation strategies, a detailed understanding of loss origins within the devices remains elusive. Here, we demonstrate that the defect capturing probability estimated by the capture cross-section is decreased by varying the dielectric response, producing the dielectric screening effect in the perovskite. The resulting perovskites also show reduced surface recombination and a weaker electron-phonon coupling. All of these boost the power conversion efficiency to 22.3% for an inverted perovskite photovoltaic device with a high open-circuit voltage of 1.25 V and a low voltage deficit of 0.37 V (a bandgap ~1.62 eV). Our results provide not only an in-depth understanding of the carrier capture processes in perovskites, but also a promising pathway for realizing highly efficient devices via dielectric regulation.


Sign in / Sign up

Export Citation Format

Share Document