PT-symmetry conditions for hybrid modes in a waveguide coupler

Author(s):  
Anton Hlushchenko ◽  
Vitalii Shcherbinin ◽  
Denis Novitsky ◽  
Vladimir Tuz
2014 ◽  
Vol 184 (11) ◽  
pp. 1177-1198 ◽  
Author(s):  
A.A. Zyablovsky ◽  
Aleksei P. Vinogradov ◽  
Aleksandr A. Pukhov ◽  
A.V. Dorofeenko ◽  
A.A. Lisyansky
Keyword(s):  

2020 ◽  
Vol 14 (6) ◽  
Author(s):  
Siavash Kananian ◽  
George Alexopoulos ◽  
Ada S.Y. Poon
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Chen ◽  
Wei Gou ◽  
Dizhou Xie ◽  
Teng Xiao ◽  
Wei Yi ◽  
...  

AbstractWe experimentally study quantum Zeno effects in a parity-time (PT) symmetric cold atom gas periodically coupled to a reservoir. Based on the state-of-the-art control of inter-site couplings of atoms in a momentum lattice, we implement a synthetic two-level system with passive PT symmetry over two lattice sites, where an effective dissipation is introduced through repeated couplings to the rest of the lattice. Quantum Zeno (anti-Zeno) effects manifest in our experiment as the overall dissipation of the two-level system becoming suppressed (enhanced) with increasing coupling intensity or frequency. We demonstrate that quantum Zeno regimes exist in the broken PT symmetry phase, and are bounded by exceptional points separating the PT symmetric and PT broken phases, as well as by a discrete set of critical coupling frequencies. Our experiment establishes the connection between PT-symmetry-breaking transitions and quantum Zeno effects, and is extendable to higher dimensions or to interacting regimes, thanks to the flexible control with atoms in a momentum lattice.


2020 ◽  
Vol 32 (16) ◽  
pp. 165401 ◽  
Author(s):  
Xue-Si Li ◽  
Ze-Zhong Li ◽  
Lian-Lian Zhang ◽  
Wei-Jiang Gong
Keyword(s):  

2021 ◽  
Vol 416 ◽  
pp. 127669
Author(s):  
Pavel Exner ◽  
Miloš Tater
Keyword(s):  

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mukesh Kumar Alaria ◽  
Sanjay Kumar Ghosh

Abstract In this paper, two types of coaxial coupler and waveguide coupler for different frequency helix traveling wave tubes (TWTs) are designed, fabricated and cold tested. The coaxial coupler includes of window ceramic and RF transformer section. At present multi-section impedance transformer design approach is used for wideband helix TWTs. In any helix TWT, impedance of the source is transformed to the characteristic impedance of helix. This is done by the quarter-wavelength (λ/4) impedance transformation approach. The simulated results of different types of couplers are carried out by HFSS and CST microwave studio software and compare with experimental results. Three-dimensional electromagnetic field simulators allowing the any geometry with port excitations it is possible to model the complex coaxial and waveguide type couplers with helix SWS assembly and predict its desired return loss performances.


Sign in / Sign up

Export Citation Format

Share Document