Automatic Learning System for Object Function Points from Random Shape Generation and Physical Validation

Author(s):  
Kosuke Takeuchi ◽  
Iori Yanokura ◽  
Yohei Kakiuchi ◽  
Kei Okada ◽  
Masayuki Inaba
Author(s):  
M S Hasibuan ◽  
L E Nugroho ◽  
P I Santosa ◽  
S S Kusumawardani

A learning style is an issue related to learners. In one way or the other, learning style could assist learners in their learning activities if students ignore their learning styles, it may influence their effort in understanding teaching materials. To overcome these problems, a model for reliable automatic learning style detection is needed. Currently, there are two approaches in detecting learning styles: data driven and literature based. Learners, especially those with changing learning styles, have difficulties in adopting these two approach since they are not adaptive, dynamic and responsive (ADR). To solve the above problems, a model using agent learning approach is proposes. Agent learning involves performing activities in four phases, i.e. initialization, learning, matching and, recommendations to decide the learning styles the students use. The proposed system will provide instructional materials that match the learning style that has been detected. The automatics detection process is performed by combining the data-driven and literature-based approaches. We propose an evaluation model agent learning system to ensure the model is working properly.


2019 ◽  
Vol 886 ◽  
pp. 188-193 ◽  
Author(s):  
Ssu Ting Lin ◽  
Jun Hu ◽  
Chia Hung Shih ◽  
Chiou Jye Huang ◽  
Ping Huan Kuo

With the development of the concept of Industry 4.0, research relating to robots is being paid more and more attention, among which the humanoid robot is a very important research topic. The humanoid robot is a robot with a bipedal mechanism. Due to the physical mechanism, humanoid robots can maneuver more easily in complex terrains, such as going up and down the stairs. However, humanoid robots often fall from imbalance. Whether or not the robot can stand up on its own after a fall is a key research issue. However, the often used method of hand tuning to allow robots to stand on its own is very inefficient. In order to solve the above problems, this paper proposes an automatic learning system based on Particle Swarm Optimization (PSO). This system allows the robot to learn how to achieve the motion of rebalancing after a fall. To allow the robot to have the capability of object recognition, this paper also applies the Convolutional Neural Network (CNN) to let the robot perform image recognition and successfully distinguish between 10 types of objects. The effectiveness and feasibility of the motion learning algorithm and the CNN based image classification for vision system proposed in this paper has been confirmed in the experimental results.


2015 ◽  
Vol 51 ◽  
pp. 1351-1358 ◽  
Author(s):  
Secundino José González Pérez ◽  
Benjamín López Pérez ◽  
Daniel Machado Fernández ◽  
José Emilio Labra Gayo

2021 ◽  
Vol 245 ◽  
pp. 01033
Author(s):  
Yang Zhao ◽  
XiangWei Wang

In order to improve the training effect, according to the mechanical structure of switch machine, combined with unity3D engine, a set of automatic learning system for switch machine based on virtual reality technology is designed. It realizes the guided teaching of switch equipment ,such as structure composition, three-dimensional model demonstration of action process and virtual disassembly. The system significantly improves the quality of training.


1981 ◽  
Vol 20 (03) ◽  
pp. 169-173
Author(s):  
J. Wagner ◽  
G. Pfurtscheixer

The shape, latency and amplitude of changes in electrical brain activity related to a stimulus (Evoked Potential) depend both on the stimulus parameters and on the background EEG at the time of stimulation. An adaptive, learnable stimulation system is introduced, whereby the subject is stimulated (e.g. with light), whenever the EEG power is subthreshold and minimal. Additionally, the system is conceived in such a way that a certain number of stimuli could be given within a particular time interval. Related to this time criterion, the threshold specific for each subject is calculated at the beginning of the experiment (preprocessing) and adapted to the EEG power during the processing mode because of long-time fluctuations and trends in the EEG. The process of adaptation is directed by a table which contains the necessary correction numbers for the threshold. Experiences of the stimulation system are reflected in an automatic correction of this table. Because the corrected and improved table is stored after each experiment and is used as the starting table for the next experiment, the system >learns<. The system introduced here can be used both for evoked response studies and for alpha-feedback experiments.


Sign in / Sign up

Export Citation Format

Share Document