Modeling and Simulation of Stand Alone Photovoltaic System using Three Level Boost Converter

Author(s):  
Cuong Hung Tran ◽  
Frederic Nollet ◽  
Najib Essounbouli ◽  
Abdelaziz Hamzaoui
Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


2011 ◽  
Vol 88-89 ◽  
pp. 244-249 ◽  
Author(s):  
Shou Jiang Cai ◽  
Pei Liang Wang ◽  
Zhi Duan Cai ◽  
Jian Hua Mao

Intermittent scan tracking (IST) is a maximum power point tracking (MPPT) method of photovoltaic system. The scanning approach of this method generally is order scanning. But this scanning mode has the weaknesses of the huge storage space and excessive amount of calculation. To eliminate these defects, this paper proposes a new scanning mode, i.e. nested scanning. To verify the effectiveness of the proposed method, a simulation system was modeled based on Matlab/Simulink. In the experiment two scanning modes above were compared and the simulation results proved that, on the premise that the accuracy of results is guaranteed, nested scanning mode can effectively decrease the quantity of required scanning voltages and currents, reduce the amount of calculation and improve the scanning efficiency.


2018 ◽  
Vol 7 (3) ◽  
pp. 1508 ◽  
Author(s):  
R Pavan Kumar Naidu ◽  
S Meikandasivam

In this paper, grid-connected photovoltaic (PV) system is presented. PV system consists of a photovoltaic module, a boost converter, and voltage source inverter. ANFIS based ICM (Incremental Conductance Method) MPPT (Maximum Power Point Tracking) controller is utilized to produce gate signal for DC-DC boost converter. This controller is used for optimizing the total performance of the Photovoltaic system in turn the errors were reduced in Voltage Source Inverter (VSI). The grid-connected PV system performance is evaluated and har-monics occurred in the system are decreased. The proposed methodology is implemented in MATLAB/Simulink. 


2019 ◽  
Vol 16 (6) ◽  
pp. 450-467
Author(s):  
S. N. Nnamchi ◽  
M. M. Mundu ◽  
J. D. Busingye ◽  
J. U. Ezenwankwo

Sign in / Sign up

Export Citation Format

Share Document