A Deployment Management of High-Availability Microservices for Edge Computing

Author(s):  
Hung-Ming Chen ◽  
Shih-Ying Chen ◽  
Zhong-Xiang Zheng ◽  
Ti-Wei Huang ◽  
Cheng-Yu Huang
2022 ◽  
Vol 22 (1) ◽  
pp. 1-21
Author(s):  
Cosmin Avasalcai ◽  
Christos Tsigkanos ◽  
Schahram Dustdar

Edge computing offers the possibility of deploying applications at the edge of the network. To take advantage of available devices’ distributed resources, applications often are structured as microservices, often having stringent requirements of low latency and high availability. However, a decentralized edge system that the application may be intended for is characterized by high volatility, due to devices making up the system being unreliable or leaving the network unexpectedly. This makes application deployment and assurance that it will continue to operate under volatility challenging. We propose an adaptive framework capable of deploying and efficiently maintaining a microservice-based application at runtime, by tackling two intertwined problems: (i) finding a microservice placement across device hosts and (ii) deriving invocation paths that serve it. Our objective is to maintain correct functionality by satisfying given requirements in terms of end-to-end latency and availability, in a volatile edge environment. We evaluate our solution quantitatively by considering performance and failure recovery.


2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Ammar Muthanna ◽  
Abdelhamied A. Ateya ◽  
Abdukodir Khakimov ◽  
Irina Gudkova ◽  
Abdelrahman Abuarqoub ◽  
...  

Designing Internet of Things (IoT) applications faces many challenges including security, massive traffic, high availability, high reliability and energy constraints. Recent distributed computing paradigms, such as Fog and multi-access edge computing (MEC), software-defined networking (SDN), network virtualization and blockchain can be exploited in IoT networks, either combined or individually, to overcome the aforementioned challenges while maintaining system performance. In this paper, we present a framework for IoT that employs an edge computing layer of Fog nodes controlled and managed by an SDN network to achieve high reliability and availability for latency-sensitive IoT applications. The SDN network is equipped with distributed controllers and distributed resource constrained OpenFlow switches. Blockchain is used to ensure decentralization in a trustful manner. Additionally, a data offloading algorithm is developed to allocate various processing and computing tasks to the OpenFlow switches based on their current workload. Moreover, a traffic model is proposed to model and analyze the traffic indifferent parts of the network. The proposed algorithm is evaluated in simulation and in a testbed. Experimental results show that the proposed framework achieves higher efficiency in terms of latency and resource utilization.


Author(s):  
Deepa Rajendra Sangolli ◽  
Nagthej Manangi Ravindrarao ◽  
Priyanka Chidambar Patil ◽  
Thrishna Palissery ◽  
Kaikai Liu

2020 ◽  
Vol 140 (9) ◽  
pp. 1030-1039
Author(s):  
W.A. Shanaka P. Abeysiriwardhana ◽  
Janaka L. Wijekoon ◽  
Hiroaki Nishi

2009 ◽  
Vol E92-B (1) ◽  
pp. 26-33
Author(s):  
Yi-Hsuan FENG ◽  
Nen-Fu HUANG ◽  
Yen-Min WU
Keyword(s):  

Author(s):  
Ping ZHAO ◽  
Jiawei TAO ◽  
Abdul RAUF ◽  
Fengde JIA ◽  
Longting XU

Sign in / Sign up

Export Citation Format

Share Document