Sizing and Operation Optimization for Renewable Energy facilities with Demand Response in Micro-grid

Author(s):  
Makoto Sugimura ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
Paras Mandal ◽  
Mamdouh Abdel-Akher ◽  
...  
2018 ◽  
Vol 10 (3) ◽  
pp. 847 ◽  
Author(s):  
Yongli Wang ◽  
Yujing Huang ◽  
Yudong Wang ◽  
Fang Li ◽  
Yuanyuan Zhang ◽  
...  

2018 ◽  
Vol 40 (1) ◽  
pp. 47-74 ◽  
Author(s):  
Amirhossein Eshraghi ◽  
Gholamreza Salehi ◽  
Seyedmohammadreza Heibati ◽  
Kamran Lari

A model for operating an energy hub-based multiple energy generation micro-grid is optimized using the demand response program. The optimized objective model is validated against energy demand of a residential building in Tehran, Iran. The mathematical model and optimal analysis of the proposed tri-generation micro-grid are implemented by using a real-world modelling and considering the constraints of the storage system, demand response program and the performance of the devices and the power and gas grids. The dynamic optimal operation model is prepared on the basis of the mixed integer linear programming on the subsequent day and is solved to minimize the costs of energy supply. To demonstrate the improvements, different scenarios are developed so that the renewable energy resources and storages are fed into the combined cool, heat and power system gradually. The results reveal that the inclusion of each element results in a significant improvement in the operational parameters of the micro energy grid. Scenario 1 includes a combined cool, heat and power system alone, Scenario 2 is supplemented with renewable wind and solar energy resources in addition to combined cool, heat and power system and Scenario 3 includes electrical, heat and cold storages in addition to combined cool, heat and power system and renewable energy sources. Scenario 4 is similar to Scenario 3 in terms of equipment, but the only difference lies in the use of the demand response program in the former. Total operational cost is 12.7% lower in Scenario 2 than in Scenario 1, 9.2% lower in Scenario 3 than in Scenario 2 and 8.6% lower in Scenario 4 than in Scenario 3. Practical application: An optimized operation method is prepared for combined cool, heat and power systems running in different operation modes in which renewable energy sources and storages are added to the combined cool, heat and power and the demand response program is applied. The results reveal that the cost of energy supply, including the cost of electricity, gas and pollutant emissions, is reduced and the qualitative parameters of the operation, including efficiency and reliability of building micro-grid, are increased. The proposed algorithm and the evaluation method will enable building operators to plan demand response activity on the residential building in Tehran, while this can be extended to other buildings too.


2021 ◽  
Vol 13 (6) ◽  
pp. 3400
Author(s):  
Jia Ning ◽  
Sipeng Hao ◽  
Aidong Zeng ◽  
Bin Chen ◽  
Yi Tang

The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Deyaa Ahmed ◽  
Mohamed Ebeed ◽  
Abdelfatah Ali ◽  
Ali S. Alghamdi ◽  
Salah Kamel

Optimal inclusion of a photovoltaic system and wind energy resources in electrical grids is a strenuous task due to the continuous variation of their output powers and stochastic nature. Thus, it is mandatory to consider the variations of the Renewable energy resources (RERs) for efficient energy management in the electric system. The aim of the paper is to solve the energy management of a micro-grid (MG) connected to the main power system considering the variations of load demand, photovoltaic (PV), and wind turbine (WT) under deterministic and probabilistic conditions. The energy management problem is solved using an efficient algorithm, namely equilibrium optimizer (EO), for a multi-objective function which includes cost minimization, voltage profile improvement, and voltage stability improvement. The simulation results reveal that the optimal installation of a grid-connected PV unit and WT can considerably reduce the total cost and enhance system performance. In addition to that, EO is superior to both whale optimization algorithm (WOA) and sine cosine algorithm (SCA) in terms of the reported objective function.


Sign in / Sign up

Export Citation Format

Share Document