Task planning and project management using Petri nets

Author(s):  
Jongwook Kim ◽  
A.A. Desrochers ◽  
A.C. Sanderson
2020 ◽  
pp. 324-339
Author(s):  
Gen'ichi Yasuda

The paper presents a systematic method of the design of cooperative task planning and execution for complex robotic systems using multiple robots. Because individual robots can autonomously execute their dedicated tasks, in cooperative multi-robot systems, robotic activities should be designed as discrete event driven asynchronous, concurrent processes. Further, since robotic activities are hierarchically defined, control requirements should be specified in a proper and consistent manner on different levels of control abstraction. In this paper, Petri nets are adopted as a specification tool for task planning and execution by multiple robots. Based on place/transition Petri nets, control conditions for inter-robot cooperation with synchronized interaction are represented, and control rules to achieve distributed autonomous coordinated activities with synchronous and asynchronous communication are proposed. An implementation of net based control software on hierarchical and distributed architecture is presented for an example multi-robot cell, where the higher-level controller executes a global net model of task plan representing cooperative behaviors performed by the robots, and the parallel activities of the individual robots are synchronized through the transmission of requests and the reception of status between the associated lower-level local controllers.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qianli Xu ◽  
Jianxin (Roger) Jiao

The design process of product variants involves complicated task planning that needs to leverage a number of design activities and resources. A comprehensive product variant design process model is imperative for capturing the semantics underlying product variants and subsequently supporting design process planning decisions. This paper applies timed colored Petri nets (TCPN) to model various elements of the product variant design process. The TCPN model performs as a generic design process platform from which alternative configurations of process plans can be derived and further converted to discrete-event simulation models for evaluation. A case study of car dashboard family design demonstrates that the TCPN design process model can effectively represent the elements of multiple design processes and support design task planning while leveraging design activities and resource allocation at the entire product family level.


2000 ◽  
Vol 16 (7) ◽  
pp. 516-520 ◽  
Author(s):  
V. A. Jeetendra ◽  
O. V. Krishnaiah Chetty ◽  
J. Prashanth Reddy

Sign in / Sign up

Export Citation Format

Share Document