Modeling the Design Process of Product Variants With Timed Colored Petri Nets

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qianli Xu ◽  
Jianxin (Roger) Jiao

The design process of product variants involves complicated task planning that needs to leverage a number of design activities and resources. A comprehensive product variant design process model is imperative for capturing the semantics underlying product variants and subsequently supporting design process planning decisions. This paper applies timed colored Petri nets (TCPN) to model various elements of the product variant design process. The TCPN model performs as a generic design process platform from which alternative configurations of process plans can be derived and further converted to discrete-event simulation models for evaluation. A case study of car dashboard family design demonstrates that the TCPN design process model can effectively represent the elements of multiple design processes and support design task planning while leveraging design activities and resource allocation at the entire product family level.

Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

The emergence of computer and network technology has provided opportunities for researchers to construct and build systems to support dynamic, real-time, and collaborative engineering design in a concurrent manner. This paper provides an understanding of the product design in a distributed environment where designers are in different geographic locations and are required to be involved in the design process to ensure successful product design. A design process model that captures the major interactions among stakeholders is presented, based on the observation of cooperation and collaboration. The stakeholders’ interactions are divided into activity and system level to distinguish the interactions in group design activities and design perspective evolution. An initial computer implementation of the design model is presented. The design system consists of a set of tools associated with design and a management system to facilitate distributed designers to support various design activities, especially conceptual design. Our research emphasis of design collaboration in this paper is: (i) Model a Cooperative-collaborative design process; (ii) Support synchronized design activities; and (iii) Structure the complex relations of various design perspectives from engineering disciplines.


2009 ◽  
Vol 3 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Mario Fargnoli ◽  

The importance of the environmental sustainability of industrial products has become significant both because of the ever-stricter environmental legislation in the field, and the increased demand of customers concerning environmental issues. The development of sustainable products leads engineers to take into consideration environmental aspects in concurrency with traditional technical and economical aspects from the very beginning of design activities. Thus, the role of designers is clear in integrating environmental considerations into the product design activities, increasing the efficiency of the product, reducing waste of materials and energy, and controlling costs of all its life cycle stages. The output of the study consists of the development of an integrated design process model, called Operative EcoDesign Process, which is able to indicate in practice to designers the addresses that can be followed for a more effective and efficient action.


Author(s):  
Yuliang Li ◽  
Wei Zhao ◽  
Lichen Hu

Design resources such as design tools, knowledge, and data play important roles in the product variant design. The requirements for these resources as well as the resource integration mechanisms are evolving along the life-cycle based product design process. It is expected by designers that not only right design resources but also appropriate integration methods can be found and applied timely to realize design variations efficiently and effectively. In this paper, a hybrid design resource integration framework is proposed based on the design process and resource modeling in order to satisfy the evolutionary requirements for design resources in the process. The integration framework is divided into two levels, namely the abstract integration of virtual resource classes into task templates in the design process modeling and the concrete integration of resource instances into design activities in the design project runs. Based on the two-level integration framework, a hybrid integration mechanism including flexible and stiff integration models and three integration transition methods is proposed to adapt to the from-abstract-to-concrete design evolution process. The system structure and behavior models are given, according to the analysis of integration framework. A hypo-pneumatic spring design case is used to demonstrate the utility of the hybrid integration system. Design results obtained based on the resource integration tool and the traditional manual design approach are compared to assess the tool performance, which shows substantive improvements of design efficiency and efficacy.


Author(s):  
STEPHEN C.-Y. LU ◽  
JIAN CAI

Collaborative engineering design involves various stakeholders with different perspectives. The design process is relatively complex and difficult to handle. Various conflicts always happen among the design tasks and affect the design team performance. Therefore, to represent the collaborative design process and capture the evolution of design perspectives in a structured way, it is critical to manage the design conflicts and improve the collaborative design productivity. This article provides a generic collaborative design process model based on a sociotechnical design framework. This model has a topological format and adopts process analysis techniques from Petri Nets. By addressing both the technical and social aspects of collaborative design activities, it provides a mechanism to identify the interdependencies among design tasks and perspectives of different stakeholders. Based on this design process model, a methodology of detecting and handling the design conflicts is developed to support collaborative design coordination.


2020 ◽  
Vol 15 ◽  
Author(s):  
Jin Li ◽  
Xingsheng Jiang ◽  
Jingye Li ◽  
Yadong Zhao ◽  
Xuexing Li

Background: In the whole design process of modular fuel tank, there are some unreasonable phenomena. As a result, there are some defects in the design of modular fuel tank, and the function does not meet the requirements in advance. This paper studies this problem. Objective: Through on-the-spot investigation of the factory, a mechanical design process model is designed. The model can provide reference for product design participants on product design time and design quality, and can effectively solve the problem of low product design quality caused by unreasonable product design time arrangement. Methods: After sorting out the data from the factory investigation, computer software is used to program, simulate the information input of mechanical design process, and the final reference value is got. Results: This mechanical design process model is used to guide the design and production of a new project, nearly 3 months ahead of the original project completion time. Conclusion: This mechanical design process model can effectively guide the product design process, which is of great significance to the whole mechanical design field.


Author(s):  
Lisa A. Dixon ◽  
Jonathan S. Colton

Abstract Preceding research on the re-design process focused on the development and verification of an Anchoring and Adjustment design process model. Compared to the existing, predominantly top-down, models, this new model was tailored specifically to describe designers’ approaches to re-design tasks. Building upon that work, this paper presents an evaluation of a re-design process strategy that is based on the key elements identified in the Anchoring and Adjustment model (a general pattern for re-design activities and two evaluation metrics). The overall goal was to formulate an efficient and effective process management strategy unique to re-design activities. Data were collected from three industry re-design projects for the evaluation. First, an analysis of the data confirmed that the pattern of design activities and evaluation metrics used by the company’s designers could be mapped onto those that comprise the Anchoring and Adjustment model. Second, the analysis of the data suggested that with additional formalization — based on an anchoring and adjustment approach — the company’s current process management technique could provide more accurate feedback to the designers for the more efficient and effective management of their re-design processes. One of the industry case studies is detailed to illustrate the research results and conclusions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Haibo Mu ◽  
Linzhong Liu ◽  
Xiaojing Li

This paper focuses on the use of timed colored Petri nets (TCPN) to study emergency vehicle (EV) preemption control problem. TCPN is adopted to establish an urban traffic network model composed of three submodels, namely, traffic flow model, traffic signal display and phase switch model, and traffic signal switch control model. An EV preemption optimization control system, consisting of monitoring subsystem, phase time determination subsystem, and phase switching control subsystem, is designed. The calculation method of the travelling speed of EV on road sections is presented, and the methods of determining the actual green time of current phase and the other phase are given. Some computational comparisons are performed to verify the signal preemption control strategies, and simulation results indicate that the proposed approach can provide efficient and safe running environments for emergency vehicles and minimize EV’s interference to social vehicles simultaneously.


Author(s):  
Xinsheng Xu ◽  
Tianhong Yan ◽  
Yangke Ding

AbstractProduct variant design, as one of the key enabling technologies of mass customization, is the transfer of variant information among mating parts from the perspective of informatics. A dimension constraint network (DCN) among mating parts carries on the task of transferring variant information. What are the information transfer characteristics of dimensions in a constraint network is a fundamental issue to plan the product variant design process reasonably. We begin by showing the natural dynamics of the DCN from two aspects: structure and uncertainty. The information efficiency of the DCN was proposed based on its simple path to specify the information transfer capability of the network. Based on this, the information centrality of the dimension was developed by measuring the efficiency loss of the DCN after the removal of a dimension from the network, which describes the information transfer capability of this dimension. Further, the information centrality of a part was derived. Using a spherical valve subassembly, we calculated the information centrality of the dimensions in a constraint network. We determined that the information centrality of dimension is highly correlated to its out-degree. An approach to plan the sequence of the part variant design according to its information centrality was proposed. We calculated the uncertainties of the DCN and its cumulative uncertainties under different sequences of the part variant design. Results indicate that part variant design under the descending information centrality of the parts minimizes the uncertainty of the DCN. This suggests a new method of planning the sequence of part variant design.


Sign in / Sign up

Export Citation Format

Share Document