A real-time ambient air quality monitoring wireless sensor network for schools in smart cities

Author(s):  
H. Ali ◽  
J. K. Soe ◽  
Steven. R. Weller
2017 ◽  
Vol 13 (08) ◽  
pp. 79 ◽  
Author(s):  
Nagarjuna Telagam ◽  
Nehru Kandasamy ◽  
Nagendra Prasad G ◽  
Menakadevi Nanjundan

A ZigBee based wireless sensor network is implemented in this paper which is of low-cost solar-powered air quality monitoring system. The main objective of the proposed architecture is to interfacing various sensors to measure the sensor analog data and displayed in LabVIEW on the monitor using the graphical user interface (GUI).  The real time ambient air quality monitoring in smart cities is of greater significance for the health of people. The wireless network sensor nodes are placed at different traffic signals in the smart cities which collect and report real-time data on different gases which are present in the environment such as carbon monoxide (CO), nitrogen dioxide (NO2), methane (CH4) and humidity. The proposed system allows smart cities to monitor air quality conditions on a desktop/laptop computer through an application designed using graphical programming based LabVIEW software and provides an alert if the air quality characteristics exceed acceptable levels. The sensor network was successfully tested on the campus of the institute of aeronautical engineering, Hyderabad. The sensor data are indicated by different indicators on the front panel of LabVIEW and also different charts are plotted with respect to time and amplitude which explains the severity of polluted areas.


Author(s):  
Qasem Abu Al-Haija

The wireless sensor networks (WSN) are increasingly implemented in air quality monitoring with real-time and high spatial-temporal resolution. In this context, current work aimed at designing and testing a cost- and energy-efficient WSN-based air quality monitoring system. The system was assembled principally by wireless sensors, solar cells, microcontroller and network communication. In addition, a new circuit for buck-boost converter was implemented for voltage and current regulations. On-field, testing the proposed air quality monitoring system outdoor and indoor showed efficient real-time readings for the concentrations of carbon dioxide (CO2) and total volatile organic compounds (TVOC). Furthermore, it provided data about ambient temperature, relative humidity and air pressure with good accuracy. In conclusion, our results suggest a reliable and scalable WSN-based system for monitoring ambient air quality.


Sign in / Sign up

Export Citation Format

Share Document