scholarly journals A 10-μW digital signal processor with adaptive-SNR monitoring for a sub-1V digital hearing aid

Author(s):  
Jerald Yoo ◽  
Sunyoung Kim ◽  
Namjun Cho ◽  
Seong-Jun Song ◽  
Hoi-Jun Yoo
1993 ◽  
Vol 94 (3) ◽  
pp. 1882-1882
Author(s):  
Michael A. Grim ◽  
Christopher Schwietzer ◽  
Eric Lindemann ◽  
Richard H. Sweetman

According to the World Health Organization (WHO), hearing loss (HL) is one of the six key contributors to worldwide disease rates. It is becoming a critical issue in society, not just affecting the aging population, but also negatively impacting young people who are spending more of their spare time performing activities that expose them to excessive noise levels. In this research, we intend to design a filter as a signal processing system in a hearing aid (HA). MATLAB is used to model the digital filter structure, while Simulink is used to capture the entire design. This study examines current critical concerns in hearing aid research from the perspectives of a variety of disciplines. The study proposes a filter and signal processor model based on hearing aid experience, but first, it provides an audiogram for numerous examples to determine if the suggested model would suit or not. The work thus provides an effective compensation of missed high-frequency sounds response in patient hearing by the digital signal processor.


Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


2007 ◽  
Vol 17 (2) ◽  
pp. 470-473 ◽  
Author(s):  
Igor I. Soloviev ◽  
M. Raihan Rafique ◽  
Henrik Engseth ◽  
Anna Kidiyarova-Shevchenko

Sign in / Sign up

Export Citation Format

Share Document