Impact of Parasitic Wire Resistance on Accuracy and Size of Resistive Crossbars

Author(s):  
Lei Zhang ◽  
David Borggreve ◽  
Frank Vanselow ◽  
Ralf Brederlow
Keyword(s):  
2014 ◽  
Vol 80 (815) ◽  
pp. SMM0189-SMM0189 ◽  
Author(s):  
Daiki TANABE ◽  
Kazuaki NISHIYABU ◽  
Tetsusei KURASHIKI

2008 ◽  
Vol 78 (5) ◽  
pp. 917-921 ◽  
Author(s):  
Paola Gandini ◽  
Linda Orsi ◽  
Chiara Bertoncini ◽  
Sarah Massironi ◽  
Lorenzo Franchi

Abstract Objective: To test the hypothesis that there is no difference between the frictional forces produced by a passive self-ligating bracket (SLB) in vitro and a conventional bracket (CB) used with two types of elastomeric ligatures. Materials and Method: The brackets, wires and ligation methods used in vitro were a passive SLB and a CB used with two types of elastomeric ligatures (conventional elastomeric ligature [CEL] and unconventional elastomeric ligatures [UEL]). The bracket ligation systems were tested with two types of wires (0.014″ super elastic nickel titanium wire and 0.019″ × 0.025″ stainless steel wire). Resistance to sliding of the bracket/wire/ligature systems was measured with an experimental model mounted on the crosshead of an Instron testing machine with a 10 N load cell. Each sample was tested 10 consecutive times under a dry state. Results: Frictional forces close to 0 g were recorded in all tests with SLB and in all tests with UEL on CB with both wire types. Resistance to sliding increased significantly (87–177 g) (P < .05) when CEL on CB was used with both wires. Conclusion: UELs may represent a valid alternative to passive SLBs for low-friction biomechanics.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Tomoko Kobayashi ◽  
Atsushi Funatsu ◽  
Emiko Ejima ◽  
Hiromi Muranishi ◽  
Makoto Utsunomiya ◽  
...  

Aims. To determine the efficacy of a new distal protection method in SFA CTO interventions.Methods and Results. From June 2003 to February 2009, ninety-two consecutive, chronic total occlusions of superficial femoral arteries were treated with catheter-based intervention using a bidirectional approach. Nine of these cases were managed with our original, distal protection method, based on symptoms, angiographic images, wire resistance, and intravascular ultrasound images. The average age was 73 years; eight patients were male. The mean occlusion length was 17.1 cm. A distal protection balloon was inserted from the retrograde sheath in the popliteal artery and placed distal to the occluded lesion after successful wire crossing. Lesion dilatation with a balloon was performed antegradely and debris was removed by 6Fr. guiding catheter. Debris was retrieved from all lesions, consisting mainly of thrombus. Where we decided not to use the distal protection method, there was no distal thromboembolism.Conclusion. In SFA-CTO intervention, the risk of distal embolization is 10%, which can be anticipated and eliminated by the distal protection method.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000432-000437 ◽  
Author(s):  
Michael David Hook ◽  
Michael Mayer ◽  
Stevan Hunter

Abstract Reliability of wire bonds made with palladium-coated copper (PCC) wire of 25 μm diameter is studied by measuring the wire bond resistance increase over time in high temperature storage at 225 °C. Ball bonds are made on two bond pad thicknesses and tested with and without mold compound encapsulation. Bond pads are aluminum copper (Al-0.5%Cu), 800 nm and 3000 nm thick. The wirebonding pattern is arranged to facilitate 4-wire resistance measurements of 12 bond pairs in each 28-pin ceramic test package. The ball bonding recipe is optimized to minimize splash on 3000 nm Al-0.5%Cu with shear strength at least 120 MPa. Ball bond diameter is 61 μm and height is 14 μm. Measurements include bond shear test data and in-situ resistance before and during high temperature storage. Bonds on 3000 nm pads are found to be significantly more reliable than bonds on 800 nm pads within 140 h of aging.


2020 ◽  
Vol 102 (3) ◽  
pp. 1513-1520
Author(s):  
Jorge Rafael González-Teodoro ◽  
Enrique Romero-Cadaval ◽  
Rafael Asensi ◽  
Vladimir Kindl

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2742
Author(s):  
Wei Li ◽  
Shusheng Xiong ◽  
Xiaojun Zhou

In remote measurement systems, the lead wire resistance of the resistance sensor will produce a large measurement error. In order to ensure the accuracy of remote measurement, a novel lead-wire-resistance compensation technique is proposed, which is suitable for a two-wire resistance temperature detector. By connecting a zener diode in parallel with the resistance temperature detector (RTD) and an interface circuit specially designed for it, the lead-wire-resistance value can be accurately measured by virtue of the constant voltage characteristic of the zener diode when reverse breakdown occurs, and compensation can thereby be made when calculating the resistance of RTD. Through simulation verification and practical circuit testing, when the sensor resistance is in 848–2120 Ω scope and the lead wire resistance is less than 50 Ω, the proposed technology can ensure the measuring error of the sensor resistance within ±1 Ω and the temperature measurement error within ±0.3 °C for RTDs performing 1000 Ω at 0 °C. Therefore, this method is able to accurately compensate the measurement error caused by the lead wire resistance in two-wire RTDsand is suitable for most applications.


Sign in / Sign up

Export Citation Format

Share Document