Enhancement of visual quality of an image using fuzzy logic

Author(s):  
T. Aarthi ◽  
E. Sowmiya ◽  
N. Sairam
Keyword(s):  
2013 ◽  
Vol 7 (2) ◽  
pp. 594-599
Author(s):  
Shubhanshi Gupta ◽  
Ashutosh Gupta ◽  
Gagan Minocha

Contrast Enhancement is a technique which comes into the part of Image Enhancement. Contrast Enhancement is used to enhance the visual quality of any captured or other image. Contrast Enhancement can be performed with the help of Histogram equalization (HE). In this technique, the image is collected in the gray scale allocation. The image is then partitioning and applying adaptive Histogram equalization (AHE). Fuzzy logic provides a set of logics which enhance the contrast and visibility of any image. In this technique, the visual quality and the contrast of image will change and then compare these results with previous techniques. The performance of several established image enhancement techniques is presented in terms of different parameters like Absolute mean brightness error (AMBE), Peak signal to noise ratio (PSNR), contrast and Visual quality.


Author(s):  
Junyoung Yun ◽  
Hong-Chang Shin ◽  
Gwangsoon Lee ◽  
Jong-Il Park

2012 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

The main stages of solving the problem of planning movements by mobile robots in a non-stationary working environment based on neural networks, genetic algorithms and fuzzy logic are considered. The features common to the considered intellectual algorithms are singled out and their comparative analysis is carried out. Recommendations are given on the use of this or that method depending on the type of problem being solved and the requirements for the speed of the algorithm, the quality of the trajectory, the availability (volume) of sensory information, etc.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


2021 ◽  
pp. 112067212110021
Author(s):  
Javier Ruiz-Alcocer ◽  
Irene Martínez-Alberquilla ◽  
Amalia Lorente-Velázquez ◽  
José F Alfonso ◽  
David Madrid-Costa

Purpose: To objectively analyze the optical quality of the FineVision Toric intraocular lens (IOL) with two cylinder powers when different combinations of rotations and residual refractive errors are induced. Methods: This study assessed the FineVision Toric IOL with two different cylinder powers: 1.5 and 3.0 diopters (D). Three different rotation positions were considered: centered, 5° and 10° rotated. An optical bench (PMTF) was used for optical analysis. The optical quality of the IOLs was calculated by the modulation transfer function (MTF) at five different focal points (0.0, 0.25, 0.50, 0.75, and 1.00 D). Results: The MTF averaged value of the reference situation was 38.58 and 37.74 for 1.5 and 3.0 D of cylinder, respectively. For the 1.5 D cylinder, the combination of 5° of rotation with a defocus of 0.25, 0.50, 0.75, and 1.0 D induced a decrease on the MTF of 12.39, 19.94, 23.43, 24.23 units, respectively. When induced rotation was 10°, the MTF decrease was 17.26, 23.40, 24.33, 24.48 units, respectively. For the 3.0 D cylinder, the combination of 5° with 0.25, 0.50, 0.75, and 1.0 D of defocus, induced a decrease on the MTF of 12.51, 18.97, 22.36, 22.48 units, respectively. When induced rotation was 10°, the MTF decrease was: 18.42, 21.57, 23.08, and 23.61 units, respectively. Conclusion: For both FineVision Toric IOLs there is a certain optical tolerance to rotations up to 5° or residual refractive errors up to 0.25 D. Situations over these limits and their combination would affect the visual quality of patients implanted with these trifocal toric IOLs.


1967 ◽  
Vol 17 (7) ◽  
pp. 467-469 ◽  
Author(s):  
Norman C. Ahlquist ◽  
Robert J. Charlson

2016 ◽  
Vol 16 (02) ◽  
pp. 1650010 ◽  
Author(s):  
P. Mohamed Fathimal ◽  
P. Arockia Jansi Rani

With our lives trundling toward a fully-digital ecosystem in break-neck speed, today’s encryption and cryptography are facing the challenge of ensuring security and future-readiness of our transactions. When such transactions involve multiple hands, transmission of such data in discrete and recoverable parts (secret shares) guarantees confidentiality. This paper’s objective is to present a foolproof way of multiple secret sharing, eliminating issues such as half-toning and degradation of visual quality of the recovered images. This [Formula: see text] out of [Formula: see text] steganography and authenticated image sharing (SAIS) scheme for multiple color images generates [Formula: see text] relevant shares with the ability to reconstruct the secret images using [Formula: see text] shares and facility to find out any move for appropriation of share cover images. The key aspects of this proposed scheme is to use simple Boolean and arithmetic operations with reduction of computational complexity from [Formula: see text] to [Formula: see text] and to share multiple images without any pixel expansion.


Sign in / Sign up

Export Citation Format

Share Document