A hybrid approach to feature selection using correlation coefficient and fuzzy rough quick reduct algorithm applied to cancer microarray data

Author(s):  
C. Arunkumar ◽  
S. Ramakrishnan
Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Author(s):  
E. MONTAÑÉS ◽  
J. R. QUEVEDO ◽  
E. F. COMBARRO ◽  
I. DÍAZ ◽  
J. RANILLA

Feature Selection is an important task within Text Categorization, where irrelevant or noisy features are usually present, causing a lost in the performance of the classifiers. Feature Selection in Text Categorization has usually been performed using a filtering approach based on selecting the features with highest score according to certain measures. Measures of this kind come from the Information Retrieval, Information Theory and Machine Learning fields. However, wrapper approaches are known to perform better in Feature Selection than filtering approaches, although they are time-consuming and sometimes infeasible, especially in text domains. However a wrapper that explores a reduced number of feature subsets and that uses a fast method as evaluation function could overcome these difficulties. The wrapper presented in this paper satisfies these properties. Since exploring a reduced number of subsets could result in less promising subsets, a hybrid approach, that combines the wrapper method and some scoring measures, allows to explore more promising feature subsets. A comparison among some scoring measures, the wrapper method and the hybrid approach is performed. The results reveal that the hybrid approach outperforms both the wrapper approach and the scoring measures, particularly for corpora whose features are less scattered over the categories.


Sign in / Sign up

Export Citation Format

Share Document