Fault Detection and Diagnosis of Valve Actuators in Discharge Air Temperature (DAT) Systems, using Interactive Unscented Kalman Filter Estimation

Author(s):  
N. Tudoroiu ◽  
M. Zaheeruddin
Author(s):  
Magnus F. Asmussen ◽  
Henrik C. Pedersen ◽  
Lina Lilleengen ◽  
Andreas Larsen ◽  
Thomas Farsakoglou

Abstract Pitch systems impose an important part of today’s wind turbines, where they are both used for power regulation and serve as part of a turbines safety system. Any failure on a pitch system is therefore equal to an increase in downtime of the turbine and should hence be avoided. By implementing a Fault Detection and Diagnosis (FDD) scheme faults may be detected and estimated before resulting in a failure, thus increasing the availability and aiding in the maintenance of the wind turbine. The focus of this paper is therefore on the development of a FDD algorithm to detect leakage and sensor faults in a fluid power pitch system. The FDD algorithm is based on a State Augmented Extended Kalman Filter (SAEKF) and a bank of observers, which is designed utilizing an experimentally validated model of a pitch system. The SAEKF is designed to detect and estimate both internal and external leakage faults, while also estimating the unknown external load on the system, and the bank of observers to detect sensor drop-outs. From simulation it is found that the SAEKF may detect both abrupt and evolving internal and external leakages, while being robust towards noise and variation in system parameters. Similar it is found that the scheme is able to detect sensor drop-outs, but is less robust towards this.


2021 ◽  
Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.


2021 ◽  
Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.


Sign in / Sign up

Export Citation Format

Share Document