scholarly journals Fault detection and isolation in an aircraft engine bleed air system

Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.


2021 ◽  
Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.



2018 ◽  
Vol 155 ◽  
pp. 01041 ◽  
Author(s):  
Aleksandr Pilipenko ◽  
Sergei Petrov

In the article the authors solve a crucial objective of reducing the cost of heating services through the introduction of a system, controlling boilers and heating devices, based on modelling of the building and predicting heating systems functioning and operation. The authors describe the method of mathematical modelling of heating systems of the building and represent the developed mathematical models, pledged and installed into the developed automated system. The authors have offered an automated system of dispatch control of the boilers with the elements of computer simulation and modelling.



2014 ◽  
Vol 623 ◽  
pp. 202-210
Author(s):  
Ping Xu ◽  
You Cai Wang ◽  
Kai Wang ◽  
Qiu Yan Wang

The Fault detection and diagnosis for sensors are important for the performance of the complex control system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal component in high-dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method is used in diagnosing for four common sensor faults. At first its fault is detected by Q statistic; secondly its fault is identified by T2 contribution percent change. The simulation and the practical result show the KPCA method has good performance on complex control system in sensor fault detection and diagnosis.



Sign in / Sign up

Export Citation Format

Share Document