valve control
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Shweta Ashok Vispute

Abstract: This project gives an outline for the development of an information system based on the existing systems with the utilization of some sensors and IOT. The cradle of this project is based on methodology of IOT. Water level in a dam needs to be maintained effectively to avoid complications. The quantity of water released is hardly ever correct resulting in wastage of water and it is impossible for a man to precisely control the gates without knowledge of exact water level and water inflow rate. We have developed a mechatronics based system. We have designed a system in which real time things are interconnected to web. Water level contactless Ultrasonic sensor is placed in tub connected through Arduino UNO to serve the same purpose automatically and forward the status to it. This system detects the level of water and estimate the water inflow rate in a tub and thereby control the Solenoid valve using IOT in a real-time basis. The water level is analysed using this sensor and updated in the web server using IOT module connected to the Arduino UNO. Arduino unit checks that input and upload the status of water level on web. Keywords: IOT (Internet of Things), Mechatronics, Ultrasonic sensor, Arduino UNO, Solenoid valve.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012023
Author(s):  
GuangYong Pan ◽  
LinZhan Kong ◽  
JunHua Yu ◽  
MeiLong Huang ◽  
Xin Tong

Abstract In the air brake system of the vehicle, the electromagnetic valve of the brake regulator belongs to the anti-lock brake system. In case of an emergency, the wheel is prevented from being locked and slipped during braking, and the most suitable braking force is applied to each wheel, so that the adhesion force [1] of the tire to the ground is fully utilized, which plays a vital role in improving the safety of the vehicle. In ABS anti-lock system, the regulation of solenoid valve plays an important role. This paper analyzes and applies a kind of solenoid valve control.


Author(s):  
Ronnie S. Concepcion II ◽  
Sandy C. Lauguico ◽  
Jonnel D. Alejandrino ◽  
Argel A. Bandala ◽  
Edwin Sybingco ◽  
...  

Sustainability is a major challenge in any plant factory, particularly those involving precision agriculture. In this study, an adaptive fertigation system in a three-tier nutrient film technique aquaponic system was developed using a non-destructive vision-based lettuce phenotype (VIPHLET) model integrated with an 18-rule Mamdani fuzzy inference system for nutrient valve control. Four lettuce phenes, that is, fresh weight, chlorophylls a and b, and vitamin C concentrations as outputted by the genetic programming-based VIPHLET model were optimized for each growth stage by injecting NPK nutrients into the mixing tank, as determined based on leaf canopy signatures. This novel adaptive fertigation system resulted in higher nutrient use efficiency (99.678%) and lower chemical waste emission (14.108 mg L-1) than that by manual fertigation (92.468%, 178.88 mg L-1). Overall, it can improve agricultural malpractices in relation to sustainable agriculture.


2021 ◽  
Author(s):  
Zbigniew Żmudka ◽  
Stefan Postrzednik

The article presents theoretical research of the proposed system of fully independent valve control (FIVC) of the SI engine. The analysis included controlling the movement of the intake valves, which results in adjusting the mass of the fresh charge to the current engine load, as well as the movement of the exhaust valves, where the main aim is to keep the rest of the exhaust gas in the cylinder, i.e. implementation of internal EGR. The open theoretical Seiliger-Sabathe cycle with the classic throttle regulation of load is the reference cycle for assessment of benefits and study of the effectiveness of obtaining work as a result of application of the FIVC system. A comparative analysis of the effectiveness of application of the proposed system was carried out based on the selected quantities: fuel dose, cycle work, relative work of charge exchange and cycle efficiency. The use of the FIVC to regulate the SI engine load makes it possible to eliminate the throttle and thus reduce the charge exchange work, especially in the partial load range. And this then leads to an increase in internal and effective work, which in turn results in an increase in the effective energy efficiency of an engine operation.


2021 ◽  
Vol 2005 (1) ◽  
pp. 012215
Author(s):  
Changxian Gan ◽  
Tian Wan ◽  
Weiwei Pan ◽  
Shengzhi Liu ◽  
Lei Tang ◽  
...  

Author(s):  
W. Widhiada ◽  
I. M. Widiyarta ◽  
I.N.G. Antara ◽  
I.N. Budiarsa ◽  
I.M.G. Karohika

2021 ◽  
Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.


2021 ◽  
Author(s):  
Lan Shang

High temperature pressurized bleed air generated in the engine compressor is used for air conditioning in a jetliner. The engine bleed air must be regulated to a target temperature in the bleed air temperature control system using cold ram air before it can be used in the cabin or other low temperature area. The bleed air system is a control system that consists of sensors, and valve actuators. Potential faults associated with these components need to be considered in the design of the control system. This dissertation focuses on fault detection and diagnosis of the bleed air temperature control system. The faults in temperature sensors and valve actuators are detected using two unscented Kalman filters. The source of a fault is identified using the squared residuals. Nonlinear governing equations for the engine bleed air temperature control system are derived in state space form. Convergence analysis of the proposed fault detection and diagnosis methods is conducted. Heat exchanger is another core component in the bleed air temperature control system. A common fault associated with a heat exchanger is fouling which reduces the heat transfer efficiency, introduces additional resistance to flow, and increases fuel consumption. This dissertation presents a heat exchanger fouling detection method based on the valve control command of an engine bleed air temperature control system. Heat exchanger fouling is monitored by estimating the deviation of valve control command. A simulated bleed air temperature control system has been designed and built. Experiments have been conducted for temperature sensor fault, valve actuator fault, and heat exchanger fouling. Computer simulations for each of these cases are conducted and compared to experimental results.


2021 ◽  
Author(s):  
Lanhui Li ◽  
Eiko Westerbeek ◽  
Jeroen Vollenbroek ◽  
Sissi de Beer ◽  
Lingling Shui ◽  
...  

<p>In this work, we introduce a Poly(N-isopropylacrylamide) (PNIPAm) grafted PDMS (PNIPAm-g-PDMS) capillary flow-driven microfluidic device with integrated valving function. Due to the thermo-sensitive properties of PNIPAm, the device possesses a temperature-switchable surface wettability between 20 and 36 °C. By locally integrating a heating wire, a hydrophobic valving function can thus be obtained. The device provides large operational freedom, enables single-valve control, and operates in a convenient temperature range. In addition, this device is characterized by a capillary filling rate that is constant in time. The constant flow velocities ranging from 1 µm/s to 240 µm/s can be obtained in dry PNIPAm-g-PDMS and freshly treated PNIPAm-g-PDMS devices with different channel geometry. We explained the constant flow rate with diffusive hydration of PNIPAm at the liquid front. This device thus provides both stop valving and accurate flow control functions, being potentially applied for diagnostic assay performance.</p><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document