An algorithm for calculating the exact bit error probability of a binary linear code over the binary symmetric channel

Author(s):  
T. Wadayama
2022 ◽  
Vol 70 (1) ◽  
pp. 38-52
Author(s):  
Frank Schiller ◽  
Dan Judd ◽  
Peerasan Supavatanakul ◽  
Tina Hardt ◽  
Felix Wieczorek

Abstract A fundamental measure of safety communication is the residual error probability, i. e., the probability of undetected errors. For the detection of data errors, typically a Cyclic Redundancy Check (CRC) is applied, and the resulting residual error probability is determined based on the Binary Symmetric Channel (BSC) model. The use of this model had been questioned since several error types cannot be sufficiently described. Especially the increasing introduction of security algorithms into underlying communication layers requires a more adequate channel model. This paper introduces an enhanced model that extends the list of considered data error types by combining the BSC model with a Uniformly Distributed Segments (UDS) model. Although models beyond BSC are applied, the hitherto method of the calculation of the residual error probability can be maintained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel Angel Lastras-Montaño ◽  
Osvaldo Del Pozo-Zamudio ◽  
Lev Glebsky ◽  
Meiran Zhao ◽  
Huaqiang Wu ◽  
...  

AbstractRatio-based encoding has recently been proposed for single-level resistive memory cells, in which the resistance ratio of a pair of resistance-switching devices, rather than the resistance of a single device (i.e. resistance-based encoding), is used for encoding single-bit information, which significantly reduces the bit error probability. Generalizing this concept for multi-level cells, we propose a ratio-based information encoding mechanism and demonstrate its advantages over the resistance-based encoding for designing multi-level memory systems. We derive a closed-form expression for the bit error probability of ratio-based and resistance-based encodings as a function of the number of levels of the memory cell, the variance of the distribution of the resistive states, and the ON/OFF ratio of the resistive device, from which we prove that for a multi-level memory system using resistance-based encoding with bit error probability x, its corresponding bit error probability using ratio-based encoding will be reduced to $$x^2$$ x 2 at the best case and $$x^{\sqrt{2}}$$ x 2 at the worst case. We experimentally validated these findings on multiple resistance-switching devices and show that, compared to the resistance-based encoding on the same resistive devices, our approach achieves up to 3 orders of magnitude lower bit error probability, or alternatively it could reduce the cell’s programming time and programming energy by up 5–10$$\times$$ × , while achieving the same bit error probability.


Sign in / Sign up

Export Citation Format

Share Document