Double Nearest-Neighbor Error Correcting Codes on Hexagonal Signal Constellation

Author(s):  
Hiroyoshi Morita
Author(s):  
Levon Arsalanyan ◽  
Hayk Danoyan

The Nearest Neighbor search algorithm considered in this paper is well known (Elias algorithm). It uses error-correcting codes and constructs appropriate hash-coding schemas. These schemas preprocess the data in the form of lists. Each list is contained in some sphere, centered at a code-word. The algorithm is considered for the cases of perfect codes, so the spheres and, consequently, the lists do not intersect. As such codes exist for the limited set of parameters, the algorithm is considered for some other generalizations of perfect codes, and then the same data point may be contained in different lists. A formula of time complexity of the algorithm is obtained for these cases, using coset weight structures of the mentioned codes


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


Sign in / Sign up

Export Citation Format

Share Document