octahedral plane
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 4 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Anna Jurowska ◽  
Janusz Szklarzewicz ◽  
Maciej Hodorowicz ◽  
Ryszard Gryboś

The oxidovanadium(V) Schiff base complex of formula [VO(L)(EtO)(EtOH)] (where H2L = Schiff base ligand derived from 5-methoxysalicylaldehyde and phenylacetic hydrazide) was synthesized and described. Complex crystalizes in triclinic P-1 space group. Octahedral geometry of the vanadium(V) centre is filed with oxido, ONO L2- ligand and two solvent molecules both in ethoxo and as neutral ethanol form. The complex is neutral, with 5- and 6-memebered ring formed by ONO ligand coordinated in octahedral plane with oxido and EtOH ligands in vertical positions. Two isomers are present in the unit cell, with different position of 5-membered ring versus vertical plane. The elemental analysis, magnetic susceptibility, thermogravimetry and spectroscopy (IR, UV-Vis) measurements were measured and are discussed. The cyclic voltammetry measurements show irreversible processes for vanadium(IV/V) redox system. Thermal stability both in a solid state (TG and SDTA measurements) as well as in solutions (at pH 7.0 and 2.0, studied by UV-Vis spectroscopy) is discussed.


2019 ◽  
Vol 92 ◽  
pp. 12008
Author(s):  
Pedro A. Covassi ◽  
Víctor A. Rinaldi

This work describes the main findings of an experimental program focused on the characterization of the mechanical anisotropy of a reinforced cohesive soil using a cubical triaxial apparatus. Several authors have studied the influence of geometry, type, number and arrangement of reinforcement layers on the mechanical behaviour of reinforced soils, mainly dedicated to evaluate the improvement of stiffness and strength. The influence of anisotropy and principal intermediate stress has not been addressed. Conventional triaxial cell (axisymmetric) and pull-out tests are the most common type of devices used in the present studies. The implementation of an experimental program using a cubical triaxial apparatus allows us to consider all the aspects mentioned before, mainly those related to an anisotropic characterization and the principal intermediate stress influence on stress-strain and strength behaviour. Results obtained in this work, show that reinforced soil is a cross-anisotropic material, and its stress-strain and strength behaviour is strongly influenced in sectors I (lode angle between 0° and 60°) and II (lode angle between 60° and 120°) of the octahedral plane. Thus, a complete characterization of geogrid reinforced soil can be made selecting an appropriate set of stress paths in the cubical apparatus.


2011 ◽  
Vol 121-126 ◽  
pp. 15-19
Author(s):  
Liu Juan Zhu ◽  
Wen Zhong Cai ◽  
Shan Tung Tu

Within a micromechanical framework, the effect of surface energy is taken into account to explore the size-dependent yield criterion of nanoporous materials under complex stress states. A theoretical picture of the yield behavior on an octahedral plane is illustrated as functions of the surface properties and void size. The prominent size dependence of the yield criterion of nanoporous materials highlights the importance of the surface effect in analyzing the strength of nanostructured materials. The results demonstrate a fundamental framework to extend continuum strength theories to the nanoscale with substantial surface effect, which may be useful for evaluating the mechanical integrity of nanostructured materials.


2009 ◽  
Vol 46 (7) ◽  
pp. 768-791 ◽  
Author(s):  
Youssef M.A. Hashash ◽  
Qingwei Fu ◽  
Jamshid Ghaboussi ◽  
Poul V. Lade ◽  
Christopher Saucier

Current laboratory testing often imposes or assumes uniform stress and strain distribution in a specimen for convenient data reduction to interpret soil behavior. This paper presents an inverse analysis framework, Self-learning Simulations (SelfSim), to interpret the drained behavior of sand from triaxial compression tests with fully frictional loading platens. The frictional platens result in significant bulging of and nonuniform stresses and strains within sand specimens. SelfSim treats the specimen as a boundary value problem (BVP) and extracts these nonuniform stresses and strains from within each specimen using external load and displacement measurements. The extracted behavior shows significant principal stress rotation, variation of intermediate principal stress, and nonuniform volume change throughout the specimen. Mobilized friction angles are interpreted on the two-dimensional slip surface associated with the Mohr–Coulomb failure criterion, on the octahedral plane associated with the Drucker–Prager failure criterion, and on the spatially mobilized plane (SMP) associated with the Matsuoka–Nakai failure criterion. The extracted stress–strain behavior is used to examine the sand’s stress-dilatancy characteristics. Proposed integration of SelfSim inverse analysis with laboratory testing opens the way for new and efficient approaches to soil behavior characterization under general loading conditions, needed for the solution of general geotechnical boundary value problems, from readily available laboratory tests.


Author(s):  
Jianxun Hu ◽  
Dongyan Wang

Silicate minerals have been found to improve physical and mechanical properties of polymers significantly through clay/polymer nanocomposites. This class of materials uses smectite-type clays, such as hectorite, montmorillonite, magadiite, and synthetic mica, as fillers to enhance the properties of polymers. One of the most important properties of smectite-type clays is their layered structure, in which each layer is constructed from tetrahedrally coordinated Si atoms fused into an edge-shared octahedral plane of either Al(OH)3 or Mg(OH)2. The layers exhibit excellent mechanical properties parallel to the layer direction due to the nature of the bonding between these atoms. It has been found that Young’s modulus in the layer direction is 50 to 400 times higher than that of a typical polymer [1–5]. The layers have a high aspect ratio and each one is approximately 1 nm thick, while the diameter may vary from 30 nm to several microns or larger. Hundreds or thousands of these layers are stacked together with weak van der Waals forces to form a clay particle. With such a configuration, it is possible to tailor clays into various different structures in polymer [1,6,7].


2004 ◽  
Vol 126 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Rajiv A. Naik ◽  
Daniel P. DeLuca ◽  
Dilip M. Shah

Single crystal nickel-base superalloys deform by shearing along 〈111〉 planes, sometimes referred to as “octahedral” slip planes. Under fatigue loading, cyclic stress produces alternating slip reversals on the critical slip systems which eventually results in fatigue crack initiation along the “critical” octahedral planes. A “critical plane” fatigue modeling approach was developed in the present study to analyze high cycle fatigue (HCF) failures in single crystal materials. This approach accounted for the effects of crystal orientation and the micromechanics of the deformation and slip mechanisms observed in single crystal materials. Three-dimensional stress and strain transformation equations were developed to determine stresses and strains along the crystallographic octahedral planes and corresponding slip systems. These stresses and strains were then used to calculate several multiaxial critical plane parameters to determine the amount of fatigue damage and also the “critical planes” along which HCF failures would initiate. The computed fatigue damage parameters were used along with experimentally measured fatigue lives, at 1100°F, to correlate the data for different loading orientations. Microscopic observations of the fracture surfaces were used to determine the actual octahedral plane (or facet) on which fatigue initiation occurred. X-ray diffraction measurements were then used to uniquely identify this damage initiation facet with respect to the crystal orientation in each specimen. These experimentally determined HCF initiation planes were compared with the analytically predicted “critical planes.”


Sign in / Sign up

Export Citation Format

Share Document