Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT

Author(s):  
Artrim Kjamilji ◽  
Albert Levi ◽  
Erkay Savas ◽  
Osman Berke Guney
2021 ◽  
pp. 102685
Author(s):  
Parjanay Sharma ◽  
Siddhant Jain ◽  
Shashank Gupta ◽  
Vinay Chamola

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


Author(s):  
Mona Bakri Hassan ◽  
Elmustafa Sayed Ali Ahmed ◽  
Rashid A. Saeed

The use of AI algorithms in the IoT enhances the ability to analyse big data and various platforms for a number of IoT applications, including industrial applications. AI provides unique solutions in support of managing each of the different types of data for the IoT in terms of identification, classification, and decision making. In industrial IoT (IIoT), sensors, and other intelligence can be added to new or existing plants in order to monitor exterior parameters like energy consumption and other industrial parameters levels. In addition, smart devices designed as factory robots, specialized decision-making systems, and other online auxiliary systems are used in the industries IoT. Industrial IoT systems need smart operations management methods. The use of machine learning achieves methods that analyse big data developed for decision-making purposes. Machine learning drives efficient and effective decision making, particularly in the field of data flow and real-time analytics associated with advanced industrial computing networks.


Author(s):  
Rodrigo Marino ◽  
Cristian Wisultschew ◽  
Andres Otero ◽  
Jose M. Lanza-Gutierrez ◽  
Jorge Portilla ◽  
...  

2018 ◽  
Vol 58 ◽  
pp. 87-108 ◽  
Author(s):  
Heejin Park ◽  
Pyung Kim ◽  
Heeyoul Kim ◽  
Ki-Woong Park ◽  
Younho Lee

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2662
Author(s):  
Henry Vargas ◽  
Carlos Lozano-Garzon ◽  
Germán A. Montoya ◽  
Yezid Donoso

Internet of Things (IoT) networks have been integrated into industrial infrastructure schemes, positioning themselves as devices that communicate highly classified information for the most critical companies of world nations. Currently, and in order to look for alternatives to mitigate this risk, solutions based on Blockchain algorithms and Machine Learning techniques have been implemented separately with the aim of mitigating potential threats in IIoT networks. In this paper, we sought to integrate the previous solutions to create an integral protection mechanism for IoT device networks, which would allow the identification of threats, activate secure information transfer mechanisms, and it would be adapted to the computational capabilities of industrial IoT. The proposed solution achieved the proposed objectives and is presented as a viable mechanism for detecting and containing intruders in an IoT network. In some cases, it overcomes traditional detection mechanisms such as an IDS.


Sign in / Sign up

Export Citation Format

Share Document