Multimode sensing technique for carbon monoxide plume tracking and forecasting for reliable field deployed air breathing PEM fuel cell operation

Author(s):  
Saurav Mitra ◽  
P Ramesh ◽  
Mitun Bhattacharyya ◽  
Siddhartha P. Duttagupta
Author(s):  
Samuel Simon Araya ◽  
Søren Juhl Andreasen ◽  
Søren Knudsen Kær

As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions.


2021 ◽  
Vol MA2021-02 (37) ◽  
pp. 1104-1104
Author(s):  
Ariel Chiche ◽  
Göran Lindbergh ◽  
Ivan Stenius ◽  
Carina Lagergren

2021 ◽  
Vol MA2021-02 (36) ◽  
pp. 1018-1018
Author(s):  
Venkata Yarlagadda ◽  
Wenbin Gu ◽  
Srikanth Arisetty ◽  
Anusorn Kongkanand

2019 ◽  
Vol 30 (4) ◽  
pp. 2077-2097 ◽  
Author(s):  
Zhenxiao Chen ◽  
Derek Ingham ◽  
Mohammed Ismail ◽  
Lin Ma ◽  
Kevin J. Hughes ◽  
...  

Purpose The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells. Design/methodology/approach An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated. Findings The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell. Practical implications The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs. Originality/value The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells.


Sign in / Sign up

Export Citation Format

Share Document