VLSI architectures of perceptual based video watermarking for real-time copyright protection

Author(s):  
Saraju P. Mohanty ◽  
Elias Kougianos ◽  
Wei Cai ◽  
Manish Ratnani
Author(s):  
B.SUMANA PRIYANKA ◽  
N. SAGAR

There is a need for real-time copyright logo insertion in emerging applications, such as Internet protocol television (IPTV). This situation arises in IP-TV and digital TV broadcasting when video residing in a server has to be broadcast by different stations and under different broadcasting rights. Embedded systems that are involved in broadcasting need to have embedded copyright protection. Existing works are targeted towards invisible watermarking, not useful for logo insertion. MPEG-4 is the mainstream exchangeable video format in the Internet today because it has higher and flexible compression rate, lower bit rate, and higher efficiency while superior visual quality.The main steps for MPEG-4 are color space conversion and sampling, DCT and its inverse (IDCT), quantization, zigzag scanning, motion estimation, and entropy coding. In this work a watermarking algorithm that performs the broadcaster's logo insertion as watermark in the DCT domain is been presented. The robustness of DCT watermarking arises from the fact that if an attack tries to remove watermarking at mid frequencies, it will risk degrading the fidelity of the image\video because some perceptive details are at mid frequencies. The suggested methods has implemented in matlab.


2012 ◽  
Vol 19 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Liyun Wang ◽  
Hefei Ling ◽  
Fuhao zou ◽  
Zhengding Lu

Author(s):  
Fayez M. Idris

Digital watermarking is a process in which a secondary pattern or signature, called a watermark, is hidden into a digital media (e.g., image and video) such that it can be detected or extracted later for different intentions. Digital watermarking has many applications including copyright protection, authentication, tamper detection, and embedding of electronic patient records in medical images. Various software implementations of digital watermarking algorithms can be built. While software implementations can address digital watermarking in off-line applications, they cannot meet the requirements of many applications. For example, in consumer electronic devices, a software solution would be very expensive. This has motivated the development of hardware implementations of digital watermarking. In this chapter, the authors present a detailed survey of existing hardware implementations of image and video watermarking algorithms. Fundamental design issues are discussed and special techniques exploited to enhance efficiency are identified. Future outlooks are also presented to address the challenges of hardware architecture design for image and video watermarking.


Sign in / Sign up

Export Citation Format

Share Document