Research on Thrust Distribution Control Strategy of Ship Electric Propulsion System Based on Model Predictive Control

Author(s):  
Xuyang Wang ◽  
Diju Gao ◽  
Tianzhen Wang ◽  
Xiaobin Xu
Author(s):  
Chenyu Wei ◽  
Shusheng Zang

Three-shaft gas turbine was applied to marine electric propulsion system. The dynamic performance and control strategy of the three-shaft marine electric propulsion gas turbine arrested investigator’s attention, because they are very different from that of single-shaft gas turbine due to the complicated rotor structure. In this study, a model of nonlinear differential equation set is built to calculate the dynamic performance of three-shaft gas turbine and a simulation model of three-shaft marine electric propulsion gas turbine is constructed using the platform of MATLAB/SIMULINK. An adaptive software is developed for three-shaft gas turbine simulation. The new matching problems and changing rules among parameters are investigated in the case of load rejection of marine electric propulsion system. Multi-closed loop control system, instead of traditional control system, is introduced in order to improve the system quality and safety.


2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Francesco Mauro ◽  
Elia Ghigliossi ◽  
Vittorio Bucci ◽  
Alberto Marinó

Nowadays, sustainable navigation is becoming a trending topic not only for merchant ships but also for pleasure vessels such as motoryachts. Therefore, the adoption of a hybrid-electric propulsion system and the installation of on-board storage devices could increase the greenness of a megayacht. This paper analyses the performance of three commercial propulsive solutions, using a dynamic operative profile and considering the influences of the smart berthing infrastructures. Results compare the yearly fuel consumptions of the analysed configurations for a reference megayacht.


Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


Sign in / Sign up

Export Citation Format

Share Document