Author(s):  
Ali Mahani ◽  
Ebrahim Farahmand ◽  
Saeide Sheikhpour ◽  
Nooshin Taheri-Chatrudi

Wireless sensor networks (WSNs) are beginning to be deployed at an accelerated pace, and they have attracted significant attention in a broad spectrum of applications. WSNs encompass a large number of sensor nodes enabling a base station (BS) to sense and transmit data over the area where WSN is spread. As most sensor nodes have a limited energy capacity and at the same time transmit critical information, enhancing the lifetime and the reliability of WSNs are essential factors in designing these networks. Among many approaches, clustering of sensor nodes has proved to be an effective method of reducing energy consumption and increasing lifetime of WSNs. In this paper, a new energy-efficient clustering protocol is implemented using a two-step Genetic Algorithm (GA). In the first step of GA, cluster heads (CHs) are selected, and in the second step, cluster members are chosen based on their distance to the selected CHs. Compared to other clustering protocols, the lifetime of WSNs in the proposed clustering is improved. This improvement is the consequence of the fact that this clustering considers energy efficient parameters in clustering protocol.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sercan Vançin ◽  
Ebubekir Erdem

Due to the restricted hardware resources of the sensor nodes, modelling and designing energy efficient routing methods to increase the overall network lifetime have become one of the most significant strategies in wireless sensor networks (WSNs). Cluster-based heterogeneous routing protocols, a popular part of routing technology, have proven effective in management of topology, energy consumption, data collection or fusion, reliability, or stability in a distributed sensor network. In this article, an energy efficient three-level heterogeneous clustering method (DEEC) based distributed energy efficient clustering protocol named TBSDEEC (Threshold balanced sampled DEEC) is proposed. Contrary to most other studies, this study considers the effect of the threshold balanced sampled in the energy consumption model. Our model is compared with the DEEC, EDEEC (Enhanced Distributed Energy Efficient Clustering Protocol), and EDDEEC (Enhanced Developed Distributed Energy Efficient Clustering Protocol) using MATLAB as two different scenarios based on quality metrics, including living nodes on the network, network efficiency, energy consumption, number of packets received by base station (BS), and average latency. After, our new method is compared with artificial bee colony optimization (ABCO) algorithm and energy harvesting WSN (EH-WSN) clustering method. Simulation results demonstrate that the proposed model is more efficient than the other protocols and significantly increases the sensor network lifetime.


Sign in / Sign up

Export Citation Format

Share Document