SoC-mobinet: broadband transceiver design challenges

Author(s):  
F. Dielacher
2011 ◽  
pp. 726-733
Author(s):  
Michael Getaz ◽  
Rob Sanders

In modern installations vertical cooling crystallisers are now preferred over traditional horizontal units because of the significant benefits they offer, which include larger volumes and smaller floor space, suitability for outdoor installation, higher cooling surface to volume ratios and a better ability to handle highly viscous massecuite, amongst others. Since the first vertical cooling crystallisers were introduced, nearly 40 years ago, there has been a steady increase in their unit size from initial volumes in the 50–200 m3 range up to the present day where the most general unit size is now in the 300–400 m3 range, with even larger units becoming increasingly common. Large crystallisers present some significant design challenges and a good modern vertical cooling crystalliser design requires a robust construction of heat exchange surface, stirrer and drive units coupled with features that promote good heat transfer characteristics and uniform massecuite flow patterns. Careful attention to cooling tube and stirrer arm design and configuration are needed to achieve this, whilst the use of modern planetary gearboxes and variable frequency controlled motor drive units can provide added benefits to boost both performance and reliability. How these design features are incorporated in a modern unit is explained, focusing on cane C massecuite duty and using the Fives Cail and Fives Fletcher units as an example.


2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


Sign in / Sign up

Export Citation Format

Share Document