Fault detection capabilities of coupling-based OO testing

Author(s):  
R.T. Alexander ◽  
J. Offutt ◽  
J.M. Biemann
1978 ◽  
Vol C-27 (12) ◽  
pp. 1093-1098 ◽  
Author(s):  
Reynolds ◽  
Metze

2019 ◽  
Vol 29 (03) ◽  
pp. 2050044
Author(s):  
Noura Benhadjyoussef ◽  
Mouna Karmani ◽  
Mohsen Machhout ◽  
Belgacem Hamdi

A Fault-Resistant scheme has been proposed to secure the Advanced Encryption Standard (AES) against Differential Fault Analysis (DFA) attack. In this paper, a hybrid countermeasure has been presented in order to protect a 32-bits AES architecture proposed for resource-constrained embedded systems. A comparative study between the most well-known fault detection schemes in terms of fault detection capabilities and implementation cost has been proposed. Based on this study, we propose a hybrid fault resistant scheme to secure the AES using the parity detection for linear operations and the time redundancy for SubBytes operation. The proposed scheme is implemented on the Virtex-5 Xilinx FPGA board in order to evaluate the efficiency of the proposed fault-resistant scheme in terms of area, time costs and fault coverage (FC). Experimental results prove that the countermeasure achieves a FC with about 98,82% of the injected faults detected during the 32-bits AES process. The area overhead of the proposed countermeasure is about 14% and the additional time delay is about 13%.


2020 ◽  
Author(s):  
Rubing Huang ◽  
Haibo Chen ◽  
Yunan Zhou ◽  
Tsong Yueh Chen ◽  
Dave Towey ◽  
...  

Abstract Combinatorial interaction testing (CIT) aims at constructing a covering array (CA) of all value combinations at a specific interaction strength, to detect faults that are caused by the interaction of parameters. CIT has been widely used in different applications, with many algorithms and tools having been proposed to support CA construction. To date, however, there appears to have been no studies comparing different CA constructors when only some of the CA test cases are executed. In this paper, we present an investigation of five popular CA constructors: ACTS, Jenny, PICT, CASA and TCA. We conducted empirical studies examining the five programs, focusing on interaction coverage and fault detection. The experimental results show that when there is no preference or special justification for using other CA constructors, then Jenny is recommended—because it achieves better interaction coverage and fault detection than the other four constructors in many cases. Our results also show that when using ACTS or CASA, their CAs must be prioritized before testing. The main reason for this is that these CAs can result in considerable interaction coverage or fault detection capabilities when executing a large number of test cases; however, they may also produce the lowest rates of fault detection and interaction coverage.


2018 ◽  
Vol 14 (09) ◽  
pp. 82
Author(s):  
Zhaihe Zhou ◽  
Qianyun Zhang ◽  
Qingtao Zhao ◽  
Ruyi Chen ◽  
Qingxi Zeng

<p class="0abstract"><span lang="EN-US">To cope with the fault detection in dynamic conditions of inertial components in the mobile robots, an improved principal component analysis (PCA) method was proposed. This work took a five gyroscopes redundancy allocation model to realize the measurement of the attitude. It is hard to distinguish the fault message from dynamic message in dynamic system that results in false alarm and missing inspection, so we firstly used the parity vector to preprocess the measurement data from the sensors. A fault was detected when the preprocessed data was dealt with PCA method. The effectiveness of the improved PCA method introduced in this paper was verified by comparing fault detection capabilities of conventional PCA method under the dynamic conditions of the step fault. The results of the simulation and experimental verification of the method was expected to contribute to the fault detection and improve the accuracy and reliability of the multi-sensors system in dynamic conditions.</span></p>


Sign in / Sign up

Export Citation Format

Share Document