An experimental analysis of fault detection capabilities of covering array constructors

Author(s):  
Rubing Huang ◽  
Yunan Zhou ◽  
Dave Towey ◽  
Tsong Yueh Chen ◽  
Jinfu Chen
2020 ◽  
Author(s):  
Rubing Huang ◽  
Haibo Chen ◽  
Yunan Zhou ◽  
Tsong Yueh Chen ◽  
Dave Towey ◽  
...  

Abstract Combinatorial interaction testing (CIT) aims at constructing a covering array (CA) of all value combinations at a specific interaction strength, to detect faults that are caused by the interaction of parameters. CIT has been widely used in different applications, with many algorithms and tools having been proposed to support CA construction. To date, however, there appears to have been no studies comparing different CA constructors when only some of the CA test cases are executed. In this paper, we present an investigation of five popular CA constructors: ACTS, Jenny, PICT, CASA and TCA. We conducted empirical studies examining the five programs, focusing on interaction coverage and fault detection. The experimental results show that when there is no preference or special justification for using other CA constructors, then Jenny is recommended—because it achieves better interaction coverage and fault detection than the other four constructors in many cases. Our results also show that when using ACTS or CASA, their CAs must be prioritized before testing. The main reason for this is that these CAs can result in considerable interaction coverage or fault detection capabilities when executing a large number of test cases; however, they may also produce the lowest rates of fault detection and interaction coverage.


1978 ◽  
Vol C-27 (12) ◽  
pp. 1093-1098 ◽  
Author(s):  
Reynolds ◽  
Metze

2019 ◽  
Vol 29 (03) ◽  
pp. 2050044
Author(s):  
Noura Benhadjyoussef ◽  
Mouna Karmani ◽  
Mohsen Machhout ◽  
Belgacem Hamdi

A Fault-Resistant scheme has been proposed to secure the Advanced Encryption Standard (AES) against Differential Fault Analysis (DFA) attack. In this paper, a hybrid countermeasure has been presented in order to protect a 32-bits AES architecture proposed for resource-constrained embedded systems. A comparative study between the most well-known fault detection schemes in terms of fault detection capabilities and implementation cost has been proposed. Based on this study, we propose a hybrid fault resistant scheme to secure the AES using the parity detection for linear operations and the time redundancy for SubBytes operation. The proposed scheme is implemented on the Virtex-5 Xilinx FPGA board in order to evaluate the efficiency of the proposed fault-resistant scheme in terms of area, time costs and fault coverage (FC). Experimental results prove that the countermeasure achieves a FC with about 98,82% of the injected faults detected during the 32-bits AES process. The area overhead of the proposed countermeasure is about 14% and the additional time delay is about 13%.


Measurement ◽  
2013 ◽  
Vol 46 (1) ◽  
pp. 336-344 ◽  
Author(s):  
Hamdi Taplak ◽  
Selçuk Erkaya ◽  
İbrahim Uzmay

10.29007/dldg ◽  
2018 ◽  
Author(s):  
Jatinkumar Soni ◽  
Dhaval Suthar

Analysis of Dissolved gas method is very sensitive and reliable method for detection of internal fault in power transformer. One of the most used method for DGA is duval triangle method. Duval triangle is not considering two combustible gases like, ethane so, Duval triangle method has low accuracy for fault interpretation. Then, Duval pentagonal method is used for fault detection in power transformer. In this paper, we have get data for power transformer from Torrent Power Ltd. This experiment has done on various 20 power transformer rating of 15MVA,21kV/400kV. But, In this paper, We have shown six data of fault in case study and found fault by Duval Triangle method and Duval pentagonal method. Then, we will verify this fault interpretation with actual fault. And, we will see that Duval Pentagonal method have higher accuracy (above 80%) for fault interpretation.


Sign in / Sign up

Export Citation Format

Share Document