Reducing the effects of small sample size in DCT domain for face recognition

Author(s):  
S. Dabbaghchian ◽  
A. Aghagolzadeh ◽  
M. S. Moin
2014 ◽  
Vol 889-890 ◽  
pp. 1065-1068
Author(s):  
Yu’e Lin ◽  
Xing Zhu Liang ◽  
Hua Ping Zhou

In the recent years, the feature extraction algorithms based on manifold learning, which attempt to project the original data into a lower dimensional feature space by preserving the local neighborhood structure, have drawn much attention. Among them, the Marginal Fisher Analysis (MFA) achieved high performance for face recognition. However, MFA suffers from the small sample size problems and is still a linear technique. This paper develops a new nonlinear feature extraction algorithm, called Kernel Null Space Marginal Fisher Analysis (KNSMFA). KNSMFA based on a new optimization criterion is presented, which means that all the discriminant vectors can be calculated in the null space of the within-class scatter. KNSMFA not only exploits the nonlinear features but also overcomes the small sample size problems. Experimental results on ORL database indicate that the proposed method achieves higher recognition rate than the MFA method and some existing kernel feature extraction algorithms.


Author(s):  
HONG HUANG ◽  
JIANWEI LI ◽  
HAILIANG FENG

Automatic face recognition is a challenging problem in the biometrics area, where the dimension of the sample space is typically larger than the number of samples in the training set and consequently the so-called small sample size problem exists. Recently, neuroscientists emphasized the manifold ways of perception, and showed the face images may reside on a nonlinear submanifold hidden in the image space. Many manifold learning methods, such as Isometric feature mapping, Locally Linear Embedding, and Locally Linear Coordination are proposed. These methods achieved the submanifold by collectively analyzing the overlapped local neighborhoods and all claimed to be superior to such subspace methods as Eigenfaces and Fisherfaces in terms of classification accuracy. However, in literature, no systematic comparative study for face recognition is performed among them. In this paper, we carry out a comparative study in face recognition among them, and the study considers theoretical aspects as well as simulations performed using CMU PIE and FERET face databases.


Author(s):  
WEN-SHENG CHEN ◽  
PONG C. YUEN ◽  
JIAN HUANG

This paper presents a new regularization technique to deal with the small sample size (S3) problem in linear discriminant analysis (LDA) based face recognition. Regularization on the within-class scatter matrix Sw has been shown to be a good direction for solving the S3 problem because the solution is found in full space instead of a subspace. The main limitation in regularization is that a very high computation is required to determine the optimal parameters. In view of this limitation, this paper re-defines the three-parameter regularization on the within-class scatter matrix [Formula: see text], which is suitable for parameter reduction. Based on the new definition of [Formula: see text], we derive a single parameter (t) explicit expression formula for determining the three parameters and develop a one-parameter regularization on the within-class scatter matrix. A simple and efficient method is developed to determine the value of t. It is also proven that the new regularized within-class scatter matrix [Formula: see text] approaches the original within-class scatter matrix Sw as the single parameter tends to zero. A novel one-parameter regularization linear discriminant analysis (1PRLDA) algorithm is then developed. The proposed 1PRLDA method for face recognition has been evaluated with two public available databases, namely ORL and FERET databases. The average recognition accuracies of 50 runs for ORL and FERET databases are 96.65% and 94.00%, respectively. Comparing with existing LDA-based methods in solving the S3 problem, the proposed 1PRLDA method gives the best performance.


Sign in / Sign up

Export Citation Format

Share Document