A Broken Rotor Bar Fault Diagnosis Approach Based on Singular Value Decomposition and Variational Mode Decomposition

Author(s):  
Dan Zou ◽  
Xinglai Ge
2017 ◽  
Vol 46 (12) ◽  
pp. 1201003
Author(s):  
程知 CHENG Zhi ◽  
何枫 HE Feng ◽  
靖旭 JING Xu ◽  
张巳龙 ZHANG Si-long ◽  
侯再红 HOU Zai-hong

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yahui Cui ◽  
Runlin Chen ◽  
Lingping Chen ◽  
Lihua Wang

The extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD). Then, a vibration processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO. Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Chenguang Huang ◽  
Jianhui Lin ◽  
Jianming Ding ◽  
Yan Huang

A novel fault diagnosis method, named CPS, is proposed based on the combination of CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise), PSM (periodic segment matrix), and SVD (singular value decomposition). Firstly, the collected vibration signals are decomposed into a set of IMFs using CEEMDAN. Secondly, the PSM of the selected IMFs is constructed. Thirdly, singular values are obtained by SVD conducted on the space of PSM. Fourthly, the impulse components are enhanced by the singular value reconstruction with the first maximal singular value. Finally, the squared envelope spectra of the reconstructed signals are used to diagnose the wheelset bearing faults. The effectiveness of the proposed CPS has been verified by simulations and experiments. Compared to the well-known Hankel-based SVD, the proposed CPS performs better at extracting the weak periodic impulse responses from the measured signals with strong noise and interferences.


Sign in / Sign up

Export Citation Format

Share Document