scholarly journals Research on Rolling Bearing Fault Feature Extraction Based on Singular Value Decomposition considering the Singular Component Accumulative Effect and Teager Energy Operator

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yahui Cui ◽  
Runlin Chen ◽  
Lingping Chen ◽  
Lihua Wang

The extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD). Then, a vibration processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO. Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.

2019 ◽  
Vol 9 (20) ◽  
pp. 4465 ◽  
Author(s):  
Jiesi Luo ◽  
Shaohui Zhang

The periodic impulse characteristics caused by rolling bearing damage are weak in the incipient failure stage. Thus, these characteristics are always drowned out by background noise and other harmonic interference. A novel approach based on multi-resolution singular value decomposition (MRSVD) is proposed in order to extract the periodic impulse characteristics for incipient fault detection. With the MRSVD method, the vibration signal is first decomposed to obtain a group of approximate signals and detailed signals with different resolutions. The first detail signal is mainly composed of noise and the last approximate signal is mainly composed of harmonic interference. Combined with the kurtosis index, the hidden periodic impulse signal will be extracted from the detail signals (in addition to the first detail signal). Thus, the incipient fault detection of a rolling bearing can be fulfilled according to the envelope demodulation spectrum of the extracted periodic impulse signal. The effectiveness of the proposed method has been demonstrated with both simulation and experimental analyses.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 482 ◽  
Author(s):  
Bin Pang ◽  
Yuling He ◽  
Guiji Tang ◽  
Chong Zhou ◽  
Tian Tian

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Xingxing Jiang ◽  
Shunming Li ◽  
Chun Cheng

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it difficult to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is firstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling element bearing fault diagnosis is proposed. Specifically, the method is conducted by the following three steps. First, the VMD is introduced to decompose the raw vibration signal. Second, the one or more modes with the information of fault-related impulses are selected through the kurtosis index. Third, Multiresolution Teager Energy Operator (MTEO) is employed to extract the fault-related impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile, the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is constructed to further enhance the fault-related impulses. The simulation studies and experimental verifications confirm that the proposed method is effective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.


2018 ◽  
Vol 37 (4) ◽  
pp. 928-954 ◽  
Author(s):  
Jun Ma ◽  
Jiande Wu ◽  
Xiaodong Wang

Rolling bearing is one of the most crucial components in rotating machinery and due to their critical role, it is of great importance to monitor their operation conditions. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. Therefore, signal denoising preprocessing has become an essential part of condition monitoring and fault diagnosis. In the present study, a hybrid fault diagnosis method based on singular value difference spectrum denoising and local mean decomposition for rolling bearing is proposed. First, as a denoising preprocessing method, singular value difference spectrum denoising is applied to reduce the noise of the bearing vibration signal and improve the signal-to-noise ratio. Then, local mean decomposition method is used to decompose the denoised signals into several product functions. And product functions corresponding to the fault feature are selected according to the correlation coefficient criterion. Finally, Teager energy spectrum is analyzed by applying the Teager energy operator to the constructed amplitude modulation component. The proposed method is successfully applied to analyze the vibration signals collected from an experimental motive rolling bearing and rolling bearing of the self-made rotor experimental platform. The experimental results demonstrate that the proposed singular value difference spectrum denoising and local mean decomposition method can achieve fairly or slightly better performance than the normal local mean decomposition-Teager energy operator method, fast kurtogram, and the wavelet denoising and local mean decomposition method.


2016 ◽  
Vol 39 (11) ◽  
pp. 1643-1648 ◽  
Author(s):  
Xueli An ◽  
Hongtao Zeng ◽  
Weiwei Yang ◽  
Xuemin An

Adaptive local iterative filtering (ALIF) is a new signal decomposition method that uses the iterative filters strategy together with an adaptive and data-driven filter length selection to achieve the decomposition. The complexity of wind power generation systems means that the randomness and kinetic mutation behaviour of their vibration signals are demonstrated at different scales. Thus it is necessary to analyse the vibration signal across multiple scales. A method based on ALIF and singular value decomposition (SVD) was used for the fault diagnosis of a wind turbine roller bearing. The ALIF method is used to decompose the bearing vibration signal into several stable components. The components, which contain major fault information, are selected to build an initial feature vector matrix. The singular value of the matrix is computed as the feature vectors of each bearing fault. The feature vectors embody the characteristics of the vibration signal. The nearest neighbour algorithm is used as a classifier to identify faults in a roller bearing. Experimental data show that the proposed method can be used to identify roller bearing faults of a wind turbine.


2021 ◽  
Vol 1965 (1) ◽  
pp. 012139
Author(s):  
Nanyan Shen ◽  
Kun Su ◽  
Jing Li ◽  
Jianrong Guo ◽  
Xiaoying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document