Experimental study of a structural health monitoring method based on piezoelectric element array

Author(s):  
Xingxing Li ◽  
Hongmei Cui ◽  
Benniu Zhang ◽  
Can Yuan
2021 ◽  
Vol 9 ◽  
Author(s):  
Sheng Liu ◽  
Yibo Wei ◽  
Yongxin Yin ◽  
Tangzheng Feng ◽  
Jinbao Lin

Pantograph-catenary system provides electric energy for the subway lines; its health status is essential to the serviceability of the vehicle. In this study, a real-time structural health monitoring method based on strain response inversion is proposed to calculate the magnitude and position of the dynamic contact force between the catenary and pantograph. The measurement principle, calibration, and installation detail of the fiber Bragg grating (FBG) sensors are also presented in this article. Putting this monitoring system in use, an application example of a subway with a rigid overhead catenary is given to demonstrate its performance. The pantograph was monitored and analyzed, running underground at a maximum speed of 80 km/h. The results show that the strain response inversion method has high measurement accuracy, good data consistency, and flexibility on sensor installation. It can accurately calculate the magnitude and location of the contact force exerted on the pantograph.


Author(s):  
Howard A. Winston ◽  
Fanping Sun ◽  
Balkrishna S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5070 ◽  
Author(s):  
Liu ◽  
Xu ◽  
Li ◽  
Wang ◽  
Zhang

Piezoelectric (PZT) ceramic elements are often subjected to complex loads during in- service lifetime in structural health monitoring (SHM) systems, and debonding of both excitation actuators and receiving sensors have a negative effect on the monitoring signals. A first systematic investigation of debonding behaviors by considering actuators and sensors simultaneously was performed in this paper. The debonding areas of actuators were set in different percentage range from 0% to 70%, and sensors in 0%, 20%, 40% and 60%. The signal-based monitoring method was used to extract the characteristic parameters of both the amplitudes and phases of received signals. Experimental results revealed that as the debonding areas of the actuators increase, the normalized amplitude appears a quick decrease before 35% debonding area of actuators and then a slow rise until 60% of debonding reached. This may be explained that the 35% debonding turning point correspond to the coincidence of the excitation frequencies of peripheral actuators with the inherent frequency of the central piezoelectric sensor, and the 60% be the result of the maximum ability of piezoelectric sensor. The degrees of debonding of actuators and sensors also have significant influence on the phase angle offset, with large debonding of actuators increases the phase offset sharply. The research work may provide useful information for practical monitoring of SHM systems.


Author(s):  
Karina M. Tsuruta ◽  
Leandro R. Cunha ◽  
Raquel S. L. Rade ◽  
Domingos A. Rade

The aim of this paper is to evaluate the use of the Structural Health Monitoring (SHM) technique based on the concept of electromechanical impedance for the assessment of low-energy impact damage in laminated carbon-fiber composite plates. The experiments were carried-out by using an especially designed pendulum, and were planned in such a way to accommodate a range of test conditions, such as impact energy and dimension of the impacting piece. Also, it was investigated the influence of the frequency band in which the impedance functions are measured. Additionally, statistical metamodels were built aiming at establishing functional relations between the values of the damage metric and impact energy for single and multiple impacts. The obtained results demonstrate the capability of the monitoring method to identify various damage levels corresponding to different impact conditions.


Sign in / Sign up

Export Citation Format

Share Document