fiber composite
Recently Published Documents


TOTAL DOCUMENTS

3138
(FIVE YEARS 834)

H-INDEX

65
(FIVE YEARS 15)

2022 ◽  
Vol 172 ◽  
pp. 108856
Author(s):  
Prasant Kumar Swain ◽  
Pratik Tiwari ◽  
Dipak Kumar Maiti ◽  
Bhrigu Nath Singh ◽  
Damodar Maity

Author(s):  
Jaehoon Choi ◽  
Omid Zabihi ◽  
Russell Varley ◽  
Jane Zhang ◽  
Bronwyn L. Fox ◽  
...  

Author(s):  
Prabu Krishnasamy ◽  
G Rajamurugan ◽  
B Muralidharan ◽  
Ravi Krishnaiah

Abstract Composite materials are revolutionizing to realize the demanding needs of aeronautical, automobile, construction, chemical, and biomedical applications. The natural fiber composite is chosen as one of the best choices among composites due to its sustainable goods like eco-friendly nature, better properties and Greenhouse gas (GHG) balance. Furthermore, the bast fiber composites are identified as promising industrial composites based on the availability, strength-to-weight ratio, manufacturing ease, and economics for commercialization. However, product quality and production volume significantly influence commercial adoption of the bast fiber composites. Especially the product quality primarily suffer due to climatic conditions, damage while harvesting, extraction method, retting issues, and extraction location. Consequently, this review aims to provide an overview of the bast fibers & their composites, properties enhancement techniques, overall mechanical behaviours and thermal stability with suitable applications.


2022 ◽  
Author(s):  
Iacopo Bianchi ◽  
Archimede Forcellese ◽  
Michela Simoncini ◽  
Alessio Vita ◽  
Vincenzo Castorani ◽  
...  

Abstract Toe caps are fundamental components of safety footwear used to prevent injuries which can be caused by falling objects. They can be realized by exploiting different materials (metal, composites and plastics) and manufacturing processes (stamping, injection molding, compression molding, etc.). However, they have always to fulfill the stringent requirements of safety regulations. In addition, in order to guarantee an ergonomic use, they must be as light as possible. It is estimated that at least 300 million pairs of safety footwear, with 600 million of toe caps, end up in landfill or are incinerated every year. This huge amount of wastes generates a relevant environmental impact, mainly attributable to toe caps manufacturing. In this context, it is important to develop new solutions which minimize the environmental impacts of toe caps manufacturing. Among others, the reuse of carbon fiber prepreg scraps has been recognized as a valid method to produce effective toe caps. In this paper, a detailed analysis of the environmental impacts associated to toe caps realized with reclaimed prepreg scraps has been conducted exploiting the Life Cycle Assessment methodology. The results have been compared to those obtained by analyzing toe caps realized in steel, aluminum, polycarbonate and glass fiber composite. Results demonstrate that the reclaim process for carbon fiber prepreg scraps can be a valid circular economy model to produce more sustainable toe caps for safety footwear.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
I. Jenish ◽  
A. Felix Sahayaraj ◽  
V. Suresh ◽  
J. Mani raj ◽  
M. Appadurai ◽  
...  

Natural fiber composite materials are competent materials that may replace conventional synthetic materials where the strength to weight ratio is essential. In this paper, the mechanical characteristics of composites made up of randomly oriented natural fibers (mudar fiber and snake grass fiber) with nano-silica filler are detailed for the first time. From the various literature surveys, the critical length of mudar and snake grass fiber is chosen as 40 mm and 30 mm, respectively. The test samples were prepared with a fiber content of 10%, 20%, 30%, and 40% with an equal amount of mudar and snake grass fiber. The percentage of nano-filler is maintained as constant as 3% with all the compositions. The composites showed that the highest mechanical properties were found at 30% fiber volume. The maximum tensile strength is 45 MPa, and the flexural strength is 51 MPa. The maximum impact strength is 4.5 J. Sample ID 3 provided the best results compared to other proportions. The fiber/matrix adhesion was investigated using a scanning electron microscope (SEM). These predominant mechanical properties make it easier for the implementation of the prepared composite material in structural and automotive applications.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 201
Author(s):  
Nathapong Sukhawipat ◽  
Laksana Saengdee ◽  
Pamela Pasetto ◽  
Jatupol Junthip ◽  
Ekkachai Martwong

A novel rigid sound-absorbing material made from used palm oil-based polyurethane foam (PUF) and water hyacinth fiber (WHF) composite was developed in this research. The NCO index was set at 100, while the WHF content was set at 1%wt with mesh sizes ranging from 80 to 20. The mechanical properties, the morphology, the flammability, and the sound absorption coefficient (SAC) of the PUF composite were all investigated. When the WHF size was reduced from 80 to 20, the compression strength of the PUF increased from 0.33 to 0.47 N/mm2. Furthermore, the use of small fiber size resulted in a smaller pore size of the PUF composite and improved the sound absorption and flammability. A feasible sound-absorbing material was a PUF composite with a WHF mesh size of 80 and an SAC value of 0.92. As a result, PUF derived from both water hyacinth and used palm oil could be a promising green alternative material for sound-absorbing applications.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Edward Clark ◽  
Monika Bleszynski ◽  
Matt Gordon

Abstract Abstract Options for recycling fiber composite polymer (FCP) materials are scarce, as these materials cannot be normally recycled and are toxic when improperly disposed. Additionally, reducing water usage is an increasing concern, as the concrete industry currently uses 10% of the world’s industrial water. Therefore, building upon our previous work, this research explores the use of polymer hybrid carbon and glass composite waste products as reinforcements in high-pressure compacted cement. Our material used nearly 70% less water during manufacturing and exhibited improved durability and salt corrosion resistance. Compression strength tests were performed on high-pressure compacted materials containing 6.0 wt% recycled admixtures before and after saltwater aging, and the results showed that the material retained 90% of its original compression strength after aging, as it contained fewer pores and cavities. Our experimental work was supplemented by molecular dynamics. Simulations, which indicated that the synergetic effects of compaction and FCP admixture addition slowed the diffusion of corrosive salt ions by an average of 84%. Thus, our high-pressure compacted cement material may be suitable for extended use in marine environments, while also reducing the amount of commercial fiber composite polymer waste material that is sent to the landfill. Article Highlights Fiber composite waste was successfully recycled into denser, high-pressure compacted ordinary Portland cement materials. High-pressure compacted cement samples containing 6% recycled admixtures retained 90% of their compression strength after salt aging. The high-pressure compaction method utilized 70% less water during specimen fabrication.


Sign in / Sign up

Export Citation Format

Share Document