Mobile platform simulation and control via virtual reality

Author(s):  
R.I. Abenavoli ◽  
A. Amoroso ◽  
H. Kormanski ◽  
K. Rudzinska
2002 ◽  
Vol 124 (4) ◽  
pp. 512-521 ◽  
Author(s):  
Qing Yu ◽  
I-Ming Chen

This paper studies the dynamic modeling of a nonholonomic mobile manipulator that consists of a multi-degree of freedom serial manipulator and an autonomous wheeled mobile platform. The manipulator is rigidly mounted on the mobile platform, and the wheeled mobile platform moves on the ground subjected to nonholonomic constraints. Forward Recursive Formulation for the dynamics of multibody systems is employed to obtain the governing equation of the mobile manipulator system. The approach fully utilizes the existing equations of motion of the manipulator and that of the mobile platform. Furthermore, terms representing the dynamic interactions between the manipulator and the mobile platform can be observed. The resulting dynamic equation of the mobile manipulator has the minimum number of generalized coordinates and can be used for the purpose of dynamic simulation and control design, etc. The implementation issues of the model are discussed.


2017 ◽  
Vol 16 (3) ◽  
pp. 587-595
Author(s):  
Vasile Mircea Cristea ◽  
Ph.m Thai Hoa ◽  
Mihai Mogos-Kirner ◽  
Csavdari Alexandra ◽  
Paul Serban Agachi

2019 ◽  
Vol 67 (4) ◽  
pp. 315-329
Author(s):  
Rongjiang Tang ◽  
Zhe Tong ◽  
Weiguang Zheng ◽  
Shenfang Li ◽  
Li Huang

2019 ◽  
Author(s):  
Ujwal Shirode ◽  
Aishwarya Aher ◽  
Pallavi Bale ◽  
Aishwarya Kadam

Sign in / Sign up

Export Citation Format

Share Document