scara robot
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 59)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
pp. 107754632110421
Author(s):  
ShengChao Zhen ◽  
MuCun Ma ◽  
XiaoLi Liu ◽  
Feng Chen ◽  
Han Zhao ◽  
...  

In this paper, we design a novel robust control method to reduce the trajectory tracking errors of the SCARA robot with uncertainties including parameters such as uncertainty of the mechanical system and external disturbance, which are time-varying and nonlinear. Then, we propose a deterministic form of the model-based robust control algorithm to deal with the uncertainties. The proposed control algorithm is composed of two parts according to the assumed upper limit of the system uncertainties: one is the traditional proportional-derivative control, and the other is the robust control based on the Lyapunov method, which has the characteristics of model-based and error-based. The stability of the proposed control algorithm is proved by the Lyapunov method theoretically, which shows the system can maintain uniformly bounded and uniformly ultimately bounded. The experimental platform includes the rapid controller prototyping cSPACE, which is designed to reduce programming time and to improve the efficiency of the practical operation. Moreover, we adopt different friction models to investigate the effect of friction on robot performance in robot joints. Finally, numerical simulation and experimental results indicate that the control algorithm proposed in this paper has desired control performance on the SCARA robot.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3160
Author(s):  
Luis Arturo Soriano ◽  
José de Jesús Rubio ◽  
Eduardo Orozco ◽  
Daniel Andres Cordova ◽  
Genaro Ochoa ◽  
...  

Sliding mode control is a robust technique that is used to overcome difficulties such as parameter variations, unmodeled dynamics, external disturbances, and payload changes in the position-tracking problem regarding robots. However, the selection of the gains in the controller could produce bigger forces than are required to move the robots, which requires spending a large amount of energy. In the literature, several approaches were used to manage these features, but some proposals are complex and require tuning the gains. In this work, a sliding mode controller was designed and optimized in order to save energy in the position-tracking problem of a two-degree-of-freedom SCARA robot. The sliding mode controller gains were optimized usinga Bat algorithm to save energy by minimizing the forces. Finally, two controllers were designed and implemented in the simulation, and as a result, adequate controller gains were found that saved energy by minimizing the forces.


2021 ◽  
pp. 811-825
Author(s):  
Rubén D. Mullo ◽  
Víctor H. Andaluz
Keyword(s):  

2021 ◽  
pp. 895-902
Author(s):  
Chunyu Zhu ◽  
Zhibin Tian ◽  
Yue Zhu ◽  
Zhongcheng Shi

2021 ◽  
Vol 162 ◽  
pp. 104339
Author(s):  
Hélène Chanal ◽  
Jean Baptiste Guyon ◽  
Adrien Koessler ◽  
Quentin Dechambre ◽  
Benjamin Boudon ◽  
...  

Automation ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 127-140
Author(s):  
Jorge Antonio Sarapura ◽  
Flavio Roberti ◽  
Ricardo Carelli

In the present work, we develop an adaptive dynamic controller based on monocular vision for the tracking of objects with a three-degrees of freedom (DOF) Scara robot manipulator. The main characteristic of the proposed control scheme is that it considers the robot dynamics, the depth of the moving object, and the mounting of the fixed camera to be unknown. The design of the control algorithm is based on an adaptive kinematic visual servo controller whose objective is the tracking of moving objects even with uncertainties in the parameters of the camera and its mounting. The design also includes a dynamic controller in cascade with the former one whose objective is to compensate the dynamics of the manipulator by generating the final control actions to the robot even with uncertainties in the parameters of its dynamic model. Using Lyapunov’s theory, we analyze the two proposed adaptive controllers for stability properties, and, through simulations, the performance of the complete control scheme is shown.


2021 ◽  
Author(s):  
Luquan Li ◽  
Yuefa Fang ◽  
Lin Wang ◽  
Jiaqiang Yao

Abstract Due to the complex structures of multi-limbed parallel robots, conventional parallel robots generally have limited workspace, complex kinematics, and complex dynamics, which increases the application difficulty of parallel robot in industrial engineering. To solve the above problems, this paper proposes a single-loop Schönflies motion parallel robot with full cycle rotation, the robot can generate Schönflies motion by the most simplified structure. The novel Schönflies motion parallel robot is a two-limb parallel mechanism with least links and joints, and each limb is driven by a 2-degree of freedom (DOF) cylindrical driver (C-driver). The full cycle rotation of the output link is achieved by “…R-H…” structure, where the revolute (R) and helical (H) joints are coaxial. Mobility, kinematics, workspace and singularity analysis of novel Schönflies motion parallel robot are analyzed. Then, dynamic model is formulated based on the principle of virtual work. Moreover, a pick-and-place task is implemented by proposed Schönflies motion parallel robot and a serial SCARA robot, respectively. The simulation results verify the correctness of the theoretical model. Furthermore, dynamics performances of Schönflies motion parallel robot and serial SCARA robot are compared, which reveal the performance merits of proposed Schönflies motion parallel robot.


Sign in / Sign up

Export Citation Format

Share Document