Deep Learning Based Angular Compounding for Accelerated Plane Wave Ultrasound Imaging

Author(s):  
Hannah Strohm ◽  
Sven Rothlubbers ◽  
Jurgen Jenne ◽  
Matthias Gunther
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2629
Author(s):  
Kunkyu Lee ◽  
Min Kim ◽  
Changhyun Lim ◽  
Tai-Kyong Song

Point-of-care ultrasound (POCUS), realized by recent developments in portable ultrasound imaging systems for prompt diagnosis and treatment, has become a major tool in accidents or emergencies. Concomitantly, the number of untrained/unskilled staff not familiar with the operation of the ultrasound system for diagnosis is increasing. By providing an imaging guide to assist clinical decisions and support diagnosis, the risk brought by inexperienced users can be managed. Recently, deep learning has been employed to guide users in ultrasound scanning and diagnosis. However, in a cloud-based ultrasonic artificial intelligence system, the use of POCUS is limited due to information security, network integrity, and significant energy consumption. To address this, we propose (1) a structure that simultaneously provides ultrasound imaging and a mobile device-based ultrasound image guide using deep learning, and (2) a reverse scan conversion (RSC) method for building an ultrasound training dataset to increase the accuracy of the deep learning model. Experimental results show that the proposed structure can achieve ultrasound imaging and deep learning simultaneously at a maximum rate of 42.9 frames per second, and that the RSC method improves the image classification accuracy by more than 3%.


Author(s):  
Sven Rothlubbers ◽  
Hannah Strohm ◽  
Klaus Eickel ◽  
Jurgen Jenne ◽  
Vincent Kuhlen ◽  
...  

Author(s):  
Raphael Prevost ◽  
Mehrdad Salehi ◽  
Julian Sprung ◽  
Alexander Ladikos ◽  
Robert Bauer ◽  
...  

2020 ◽  
Vol 108 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Ruud J. G. van Sloun ◽  
Regev Cohen ◽  
Yonina C. Eldar

Sign in / Sign up

Export Citation Format

Share Document