Improvement of radiation characteristics for the monopole antenna with asymmetric ground plane

Author(s):  
Feng-Ming Hu ◽  
Yun-Yin He ◽  
Chien-Jen Wang
Author(s):  
Sangeetha Subbaraj ◽  
Malathi Kanagasabai ◽  
Gulam Nabi Alsath Mohammed ◽  
Yogeshwari Panneer Selvam ◽  
Saffrine Kingsly ◽  
...  

Purpose This paper aims to present the design of a compact quad-band coplanar-fed monopole antenna for tablet computer applications. Design/methodology/approach The antenna has the smallest size of 26 × 14 mm and supports GSM, Wi-Fi, WIMAX and Bluetooth. The proposed antenna consists of a coplanar fed main radiator, c-shaped stubs and parasitic meandered stub. The inverted c-shaped stubs enhance the bandwidth of upper frequencies. The resonance at 2.4 GHz is individually controlled by the coupled meandered stub. Findings The percentage bandwidth in the four operating bands are 8.7/4.12/27.8/13.3%. Furthermore, the antenna is integrated with the mock-up ground plane and specific absorption rate (SAR) calculations are performed. The estimated SAR is less than 1.6 W/kg for a 1 g body tissue. The gain and efficiency of the antenna are 3.56/4.37/4.97/6 dBi and 82.4/85/97.1/89.3%, respectively. The measured impedance and radiation characteristics of the fabricated prototype are in good correlation with the simulated results. Originality/value In the proposed work, vias and lumped elements are not used for lower band excitation, and most of the wireless applications in the tablet computers have been covered. Further, the effect of antenna with different orientation has been tested for the estimation of SAR.


2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


Author(s):  
YunYan Zhou ◽  
NianShun Zhao ◽  
RenXia Ning ◽  
Jie Bao

Abstract A compact coplanar waveguide-fed monopole antenna is presented in this paper. The proposed antenna is composed of three monopole branches. In order to achieve the miniaturization, the longest branch was bent. The antenna is printed on an FR4 dielectric substrate, having a compact size of 0.144λ0 × 0.105λ0 × 0.003λ0 at its lowest resonant frequency of 900 MHz. The multiband antenna covers five frequency bands: 820–990 MHz, 1.87–2.08 GHz, 2.37–2.93 GHz, 3.98–4.27 GHz, and 5.47–8.9 GHz, which covers the entire radio frequency identification bands (860–960 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz), Global System for Mobile Communications (GSM) bands (890–960 MHz and 1.850–1.990 GHz), WLAN bands (2.4–2.484 GHz and 5.725–5.825 GHz), WiMAX band (2.5–2.69 GHz), X-band satellite communication systems (7.25–7.75 GHz and 7.9–8.4 GHz), and sub 6 GHz in 5G mobile communication system (3.3–4.2 GHz and 4.4–5.0 GHz). Also, the antenna has good radiation characteristics in the operating band, which is nearly omnidirectional. Both the simulated and experimental results are presented and compared and a good agreement is established. The proposed antenna operates in five frequency bands with high gain and good radiation characteristics, which make it a suitable candidate in terminal devices with multiple communication standards.


2021 ◽  
Author(s):  
Mahesh M Munde ◽  
Jaswantsing L Rajput ◽  
Devidas V Chikhale ◽  
Abhay E Wagh

Sign in / Sign up

Export Citation Format

Share Document