A compact CPW-fed monopole antenna for multi-band application

Author(s):  
YunYan Zhou ◽  
NianShun Zhao ◽  
RenXia Ning ◽  
Jie Bao

Abstract A compact coplanar waveguide-fed monopole antenna is presented in this paper. The proposed antenna is composed of three monopole branches. In order to achieve the miniaturization, the longest branch was bent. The antenna is printed on an FR4 dielectric substrate, having a compact size of 0.144λ0 × 0.105λ0 × 0.003λ0 at its lowest resonant frequency of 900 MHz. The multiband antenna covers five frequency bands: 820–990 MHz, 1.87–2.08 GHz, 2.37–2.93 GHz, 3.98–4.27 GHz, and 5.47–8.9 GHz, which covers the entire radio frequency identification bands (860–960 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz), Global System for Mobile Communications (GSM) bands (890–960 MHz and 1.850–1.990 GHz), WLAN bands (2.4–2.484 GHz and 5.725–5.825 GHz), WiMAX band (2.5–2.69 GHz), X-band satellite communication systems (7.25–7.75 GHz and 7.9–8.4 GHz), and sub 6 GHz in 5G mobile communication system (3.3–4.2 GHz and 4.4–5.0 GHz). Also, the antenna has good radiation characteristics in the operating band, which is nearly omnidirectional. Both the simulated and experimental results are presented and compared and a good agreement is established. The proposed antenna operates in five frequency bands with high gain and good radiation characteristics, which make it a suitable candidate in terminal devices with multiple communication standards.

Frequenz ◽  
2013 ◽  
Vol 67 (1-2) ◽  
pp. 1-5
Author(s):  
Li Li ◽  
Zhi-Li Zhou ◽  
Jing-Song Hong

AbstractA novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz–12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz–6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz–3.8 GHz for WiMAX and 7.1 GHz–7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Yan ◽  
Di Jiang ◽  
Ruimin Xu ◽  
Yuehang Xu

A novel ultrawideband (UWB) antenna which has a triple-band notch function is presented. The proposed antenna can block interfering signals from C-band satellite communication systems, IEEE802.11a, and HIPERLAN/2 WLAN systems for example. The antenna is excited by using novel common direction rectangular complementary split-ring resonators (CSRR) fabricated on radiating patch of the dielectric substrate with coplanar waveguide (CPW) feed strip line. The voltage standing wave ratio (VSWR) of the proposed antenna is less than 2.0 in the frequency band from 2.8 to 12 GHz, while showing a very sharp band-rejection performance at 3.9 GHz, 5.2 GHz, and 5.9 GHz. The measurement results show that the proposed antenna provides good omnidirectional field pattern over its whole frequency band excluding the rejected band, which is suitable for UWB applications.


Author(s):  
Н.В. ВАРЛАМОВ ◽  
С.С. УВАРОВ

Выполнен анализ интенсивности использования геостационарной орбиты (ГСО) и негеостационарных орбит (НГСО) современными системами спутниковой связи фиксированной спутниковой службы в Ки-, Ка- и Q/V-диапазонах частот. Исследование охватывает ГСО, а также два наиболее используемых сегмента НГСО с высотой апогея до 1500 км и выше 8000 км. Представлены также результаты исследований для высокоэллиптических орбит (ВЭО). Сделан вывод о дефиците орбитально-частотного ресурса на ГСО и НГСО для рассматриваемых диапазонов частот. The paper analyzes the intensity of the use of geostationary orbit (GSO) and non-geostationary orbits (non-GSO) by modern satellite communication systems of the fixed-satellite service in the Ku-, Ka- and Q/V-bands. The analysis is made for geostationary orbit and two most used segments of non-GSO orbits with apogee altitudes up to 1500 km and above 8000 km. Results for highly inclined elliptical orbits (HEO) are also presented. The analysis results show a shortage of orbital and frequency resources in GSOs and non-GSOs for the considered frequency bands.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


2020 ◽  
Vol 12 (6) ◽  
pp. 513-518
Author(s):  
Peyman Hasani ◽  
Seyed Mohammad Hashemi ◽  
Javad Ghalibafan

AbstractIn this article, a sleeve antenna with a wide impedance bandwidth that consists of a coplanar waveguide line connected to a metallic cylinder is presented. The effect of design parameters on the impedance bandwidth is considered by some simulations. In addition to the wide impedance bandwidth, the omnidirectional pattern, high efficiency, low cost and easy fabrication process, and compact dimensions cause this antenna to be a good choice for some applications at low VHF/UHF frequency bands. Due to the flexible structure of this antenna, it is possible to cover the various frequency bands by changing the parameters of the antenna. In this work a typical model of the proposed antenna for the frequency range of 127 to 586 MHz is fabricated and compared with other previous works. An equivalent circuit model has been proposed to better understand how the antenna works. The proposed antenna has a bandwidth of about 128.7% for a voltage standing wave ratio (VSWR) of less than 3, compact size of 0.274λ × 0.047λ and higher than 90% efficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rezaul Azim ◽  
Touhidul Alam ◽  
Md Sharif Mia ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

AbstractDue to the rapid development of wireless communication systems, good numbers of services and devices use different frequency bands and protocols. To concurrently cover all these services, the antenna in communication devices should operate over multiple frequency bands. The use of wide and multi-band antennas not only reduces the number of antennas necessary to cover multiple frequency bands but also lessens the system complexity, size, and costs. To operate over eight frequency bands to cover sixteen well-established narrow service bands, a planar monopole antenna is proposed for portable communication devices. The proposed antenna is comprised of an inverted F-shaped monopole patch with a rotated L-shaped strip and an F-shaped ground strip with a rotated L-shaped branch. The studied antenna can excite at multiple resonant modes which helps it to achieve eight measured operating bands of 789–921 MHz, 1367–1651 MHz, 1995–2360 MHz, 2968–3374 MHz, 3546–3707, 4091–4405 MHz, 4519–5062 MHz and 5355–6000 MHz. The achieved measured operating bands can cover sixteen popular narrow service bands for 4G/3G/2G, MWT, WiFi, WiMAX, WLAN, and sub-6 GHz 5G wireless communication system. The studied antenna achieved good gain, efficiency and exhibits stable radiation characteristics. Moreover, the antenna does not use any lumped element and left ample space for other circuitries which makes it easier to use in portable devices such as tablets, laptops, etc. with low manufacturing cost.


Sign in / Sign up

Export Citation Format

Share Document