Image compressive sensing using group sparse representation via truncated nuclear norm minimization

Author(s):  
Tianyu Geng ◽  
Guiling Sun ◽  
Yi Xu ◽  
Zhouzhou Li
Geophysics ◽  
2020 ◽  
pp. 1-60
Author(s):  
Ouyang Shao ◽  
Lingling Wang ◽  
Xiangyun Hu ◽  
Zhidan Long

Because there are many similar geological structures underground, seismic profiles have an abundance of self-repeating patterns. Thus, we can divide a seismic profile into groups of blocks with similar seismic structure. The matrix formed by stacking together similar blocks in each group should be of low rank. Hence, we can transfer the seismic denoising problem to a serial of low-rank matrix approximation (LRMA) problem. The LRMA-based model commonly adopts the nuclear norm as a convex substitute of the rank of a matrix. However, the nuclear norm minimization (NNM) shrinks the different rank components equally and may cause some biases in practice. Recently introduced truncated nuclear norm (TNN) has been proven to more accurately approximate the rank of a matrix, which is given by the sum of the set of smallest singular values. Based on this, we propose a novel denoising method using truncated nuclear norm minimization (TNNM). The objective function of this method consists of two terms, the F-norm data fidelity and a truncated nuclear norm regularization. We present an efficient two-step iterative algorithm to solve this objective function. Then, we apply the proposed TNNM algorithm to groups of blocks with similar seismic structure, and aggregate all resulting denoised blocks to get the denoised seismic data. We update the denoised results during each iteration to gradually attenuate the heavy noise. Numerical experiments demonstrate that, compared with FX-Decon, the curvelet, and the NNM-based methods, TNNM not only attenuates noise more effectively even when the SNR is as low as -10 dB and seismic data have complex structures, but also accurately preserves the seismic structures without inducing Gibbs artifacts.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Yilun Wang ◽  
Xinhua Su

Recovering a large matrix from limited measurements is a challenging task arising in many real applications, such as image inpainting, compressive sensing, and medical imaging, and these kinds of problems are mostly formulated as low-rank matrix approximation problems. Due to the rank operator being nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation and the low-rank matrix recovery problem is solved through minimization of the nuclear norm regularized problem. However, a major limitation of nuclear norm minimization is that all the singular values are simultaneously minimized and the rank may not be well approximated (Hu et al., 2013). Correspondingly, in this paper, we propose a new multistage algorithm, which makes use of the concept of Truncated Nuclear Norm Regularization (TNNR) proposed by Hu et al., 2013, and iterative support detection (ISD) proposed by Wang and Yin, 2010, to overcome the above limitation. Besides matrix completion problems considered by Hu et al., 2013, the proposed method can be also extended to the general low-rank matrix recovery problems. Extensive experiments well validate the superiority of our new algorithms over other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document