Transfer Learning Method Evaluation for Automatic Pediatric Chest X-Ray Image Segmentation

Author(s):  
Gabriel Bras ◽  
Vandecia Fernandes ◽  
Anselmo Cardoso de Paiva ◽  
Geraldo Braz Junior ◽  
Luis Rivero
2020 ◽  
Vol 10 (8) ◽  
pp. 2908 ◽  
Author(s):  
Juan Luján-García ◽  
Cornelio Yáñez-Márquez ◽  
Yenny Villuendas-Rey ◽  
Oscar Camacho-Nieto

Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have been successfully used in order to provide computer-aided diagnosis by automatic classification of medical images. For its remarkable results, the Convolutional Neural Networks (models based on Deep Learning) that are widely used in Computer Vision tasks, such as classification of injuries and brain abnormalities, among others, stand out. In this paper, we present a transfer learning method that automatically classifies between 3883 chest X-ray images characterized as depicting pneumonia and 1349 labeled as normal. The proposed method uses the Xception Network pre-trained weights on ImageNet as an initialization. Our model is competitive with respect to state-of-the-art proposals. To make comparisons with other models, we have used four well-known performance measures, obtaining the following results: precision (0.84), recall (0.99), F1-score (0.91) and area under the ROC curve (0.97). These positive results allow us to consider our proposal as an alternative that can be useful in countries with a lack of equipment and specialized radiologists.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1844
Author(s):  
Kuo-Ching Yuan ◽  
Lung-Wen Tsai ◽  
Kevin S. Lai ◽  
Sing-Teck Teng ◽  
Yu-Sheng Lo ◽  
...  

Endotracheal tubes (ETTs) provide a vital connection between the ventilator and patient; however, improper placement can hinder ventilation efficiency or injure the patient. Chest X-ray (CXR) is the most common approach to confirming ETT placement; however, technicians require considerable expertise in the interpretation of CXRs, and formal reports are often delayed. In this study, we developed an artificial intelligence-based triage system to enable the automated assessment of ETT placement in CXRs. Three intensivists performed a review of 4293 CXRs obtained from 2568 ICU patients. The CXRs were labeled “CORRECT” or “INCORRECT” in accordance with ETT placement. A region of interest (ROI) was also cropped out, including the bilateral head of the clavicle, the carina, and the tip of the ETT. Transfer learning was used to train four pre-trained models (VGG16, INCEPTION_V3, RESNET, and DENSENET169) and two models developed in the current study (VGG16_Tensor Projection Layer and CNN_Tensor Projection Layer) with the aim of differentiating the placement of ETTs. Only VGG16 based on ROI images presented acceptable performance (AUROC = 92%, F1 score = 0.87). The results obtained in this study demonstrate the feasibility of using the transfer learning method in the development of AI models by which to assess the placement of ETTs in CXRs.


2021 ◽  
Vol 144 ◽  
pp. 110713
Author(s):  
Ayan Kumar Das ◽  
Sidra Kalam ◽  
Chiranjeev Kumar ◽  
Ditipriya Sinha

2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


Sign in / Sign up

Export Citation Format

Share Document