Deep geological repository for disposal of nuclear waste in the Czech Republic

Author(s):  
M. Dvorakova ◽  
M. Vencl ◽  
T. Becvarikova
2019 ◽  
Vol 133 ◽  
pp. 02005
Author(s):  
Markéta Camfrlová

Nuclear energy accounts for a significant part of the total energy production in the Czech Republic, which is currently facing a problem dealing with the high-level radioactive waste (HLW) and the spent nuclear fuel (SNF). Deep repository is the safest option for storage of HLW. Rock environment of the area must guarantee the stability of the deep geological repository for at least 100,000 years. The aim of the research is a long-term evaluation of the climatic changes of the hypothetical area of interest, which corresponds to the candidate sites for deep geological repository in the Czech Republic. The occurrences of endogenous and exogenous phenomena, which could affect site stability, were evaluated. Concerning exogenous processes, research focuses mainly on the assessment of climatic effects. The climate scenarios for the Central Europe were examined – global climate change, glaciation, and the depth of permafrost as well as CO2 increase.


2021 ◽  
Author(s):  
Lukas Vondrovic ◽  
Jaromir Augusta ◽  
Antonin Vokal ◽  
Katerina Konopacova ◽  
Eva Popelova ◽  
...  

<p>The future deep geological repository for radioactive waste in the Czech Republic will be constructed in a suitable crystalline rock mass around 500 metres below the earth’s surface. The commencement of operation is planned for 2065. The current DGR development phase is devoted principally to the determination of the optimum disposal concept and the selection of the most suitable site. A total of nine potential sites have been assessed with the aim of reducing their number to four.</p><p>The data set subjected to assessment included site descriptions from the geological point of view (3D geological and hydrogeological model), and long-term site stability (seismotectonic, climate and erosion) and geomechanical data. A further assessed dataset included information on construction issues and on the evaluation of both environmental characteristics and the presence of groundwater resources. All the assessed characteristics were derived from surface-based exploration without the need for borehole drilling.</p><p>The key criteria reflected the three main areas of concern i.e. long-term and operational safety (including geological and hydrogeological indicators), technical feasibility and environmental impacts. The assessment of the sites was performed in two stages. The first stage involved the assessment of the probability of fulfilling the exclusion criteria (total 26), while the second stage involved the mutual comparison of the sites in terms of the defined key criteria (total of 13, divided into 38 indicators). The second stage involved the determination of weightings for the various criteria and indicators via the application of the SAATY method for the expert comparison of the significance of criteria. This method distinguished between relatively strongly weighted and less weighted criteria. The sites were graded with respect to the value estimation of the criteria; moreover, the grading of the sites considered various types of data.</p><p>A total of eight calculations were performed for five scenarios using various procedures for the estimation of the weightings and for data normalisation purposes. The first assessment stage indicated that all the sites fulfilled the DGR site assessment methodology requirements. The second stage, which comprised the assessment of the comparison of the site calculations (assessment grades) for each of the sites, was based on the levels of significance of the indicators and criteria and the resulting representative values for each site. The results of the subsequent comparison calculations indicated that the same four sites always occupied the first four positions with only minor variations in the order. The differences in the gradings of the four most suitable sites and the four relatively less suitable five sites ranged between 11% and 17.8% (between the fourth and fifth sites), which convincingly differentiated between the two groups of sites. One site was always in last position according to the calculations. In compliance with the assessment results, the four  sites were subsequently recommended to the Government of the Czech Republic for further follow-up research and analysis. Those sites that were not recommended for the next stage of research will continue to be considered as reserve (i.e. backup) sites.</p>


Clay Minerals ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 589-601
Author(s):  
Irena Hanusová ◽  
Jiří Svoboda ◽  
Petr Večerník

AbstractThe objective of the DOPAS international project is to design a sealing-plug system for deep geological repository (DGR) use, to provide detailed plans for the design of such plugs, to test the characteristics of the materials to be used and the construction technology and to install four experimental in situ plugs. The Czech experimental pressure and sealing-plug (EPSP) experiment is being conducted in a rock environment consisting of granitoids at the Josef Regional Underground Research Centre. The concept of the experiment is based primarily on the use of materials and technology available in the Czech Republic and the principal aim is to demonstrate the technical viability and functioning of a pressure-resistant plug located in a future DGR. The completion of the EPSP experiment will contribute towards both the demonstration of how sealing-plug systems behave under real underground conditions and the long-term safety of a future DGR in the Czech Republic.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 486-493
Author(s):  
Zdeněk Kaláb ◽  
Jan Šílený ◽  
Markéta Lednická

AbstractThis paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading.Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.


2006 ◽  
Vol 56 (1) ◽  
pp. D63-D71 ◽  
Author(s):  
A. Vokál ◽  
H. Filipská ◽  
V. Jedináková-Křížová ◽  
K. Štamberg ◽  
D. Vopálka

2006 ◽  
Vol 56 (S4) ◽  
pp. D63-D71 ◽  
Author(s):  
A. Vokál ◽  
H. Filipská ◽  
V. Jedináková-Křížová ◽  
K. Štamberg ◽  
D. Vopálka

Author(s):  
Václava Havlová

ÚJV Řež, a.s. as a company with a long term experience in radioactive waste management (RWM) has been running a comprehensive research programme, supporting development of deep geological repository (DGR) in the Czech Republic. Recently ÚJV Řež, a.s. research has focused on the different aspects of safety functions that DGR barriers should provide. Moreover, the research has also recently paid strong attention to real conditions that can be present in DGR (anaerobic reducing conditions, increased T due to heat generation by radioactive waste, contact of different materials within repository, real scale of the rock massive etc.). Both types of experiments, laboratory and in-situ experiments in underground laboratories, were included in the research programme. The presentation gives a brief overview of experimental trends, being conducted for materials and conditions, concerned in Czech repository concept.


Energy Policy ◽  
2017 ◽  
Vol 105 ◽  
pp. 458-466 ◽  
Author(s):  
Petr Ocelík ◽  
Jan Osička ◽  
Veronika Zapletalová ◽  
Filip Černoch ◽  
Břetislav Dančák

Sign in / Sign up

Export Citation Format

Share Document