Multi-objective Optimization Model for Service Node Selection Based on Trade-off between Quality of Service and Resource Consumption in Mobile Crowd Sensing

Author(s):  
Shuang Ding ◽  
Xin He ◽  
Jicheng Wang
2019 ◽  
Vol 155 ◽  
pp. 360-368 ◽  
Author(s):  
Mingchu Li ◽  
Yuan Gao ◽  
Mingliang Wang ◽  
Cheng Guo ◽  
Xing Tan

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Weijin Jiang ◽  
Junpeng Chen ◽  
Xiaoliang Liu ◽  
Yuehua Liu ◽  
Sijian Lv

With the rapid popularization and application of smart sensing devices, mobile crowd sensing (MCS) has made rapid development. MCS mobilizes personnel with various sensing devices to collect data. Task distribution as the key point and difficulty in the field of MCS has attracted wide attention from scholars. However, the current research on participant selection methods whose main goal is data quality is not deep enough. Different from most of these previous studies, this paper studies the participant selection scheme on the multitask condition in MCS. According to the tasks completed by the participants in the past, the accumulated reputation and willingness of participants are used to construct a quality of service model (QoS). On the basis of maximizing QoS, two heuristic greedy algorithms are used to solve participation; two options are proposed: task-centric and user-centric. The distance constraint factor, integrity constraint factor, and reputation constraint factor are introduced into our algorithms. The purpose is to select the most suitable set of participants on the premise of ensuring the QoS, as far as possible to improve the platform’s final revenue and the benefits of participants. We used a real data set and generated a simulation data set to evaluate the feasibility and effectiveness of the two algorithms. Detailedly compared our algorithms with the existing algorithms in terms of the number of participants selected, moving distance, and data quality. During the experiment, we established a step data pricing model to quantitatively compare the quality of data uploaded by participants. Experimental results show that two algorithms proposed in this paper have achieved better results in task quality than existing algorithms.


2020 ◽  
Vol 22 ◽  
pp. 100203
Author(s):  
Haiyang Yu ◽  
Chenyang Liu ◽  
Yilong Ren ◽  
Nan Ji ◽  
Can Yang

Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


Sign in / Sign up

Export Citation Format

Share Document