A novel multi-objective optimization strategy for enhancing quality of service in IoT-enabled WSN applications

2020 ◽  
Vol 13 (6) ◽  
pp. 1905-1920 ◽  
Author(s):  
A. Prasanth ◽  
S. Jayachitra
2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


Author(s):  
Wei Guo ◽  
Pingyu Jiang

For adapting the socialization, individuation and servitization in manufacturing industry, a new manufacturing paradigm called social manufacturing has received a lot of attention. Social manufacturing can be seen as a network that enterprises with socialized resources self-organized into communities that provide personalized machining and service capabilities to customers. Since a community of social manufacturing has multiple enterprises and emphasizes on the importance of service, manufacturing service order allocation must be studied from the new perspective considering objectives on service cost and quality of service. The manufacturing service order allocation can be seen as a one-to-many game model with multi-objective. In this article, a Stackelberg game model is proposed to tackle the manufacturing service order allocation problem with considering the payoffs on cost and quality of service. Since this Stackelberg game can be mapped to a multi-objective bi-level programming, a modified multi-objective hierarchical Bird Swarm Algorithm is used to find the Nash equilibrium of the game. Finally, a case from a professional printing firm is analyzed to validate the proposed methodology and model. The objective of this research is to find the Nash equilibrium on the manufacturing service order allocation and provide strategies guidance for customer and small- and medium-sized enterprises with optimal service cost and lead time. According to the game process and Nash equilibrium, some rules are revealed, and they are useful for guiding practical production.


Author(s):  
Sirwan Ghavami ◽  
Mohammad-Hasan Khademi ◽  
Farkhondeh Hemmati ◽  
Ali Fazeli ◽  
Jamshid Mohammadi-Roshandeh

Author(s):  
Masahide Matsumoto ◽  
Jumpei Abe ◽  
Masataka Yoshimura

Abstract Generally, two types of priorities are considered among multiple objectives in the design of machine structures. One of these objectives is named the “hard objective”, which is the absolutely indispensable design requirement. The other is called the “soft objective”, which has lower priority order. This paper proposes a multi-objective structural optimization strategy with priority ranking of those design objectives. Further, this strategy is demonstrated on the actual example of a motorcycle frame structural design which has three design objectives, (1) an increase in static torsional rigidity, (2) a reduction of dynamic response level, and (3) a decrease in the weight of the motorcycle frame.


2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2020 ◽  
Author(s):  
Tomohiro Harada ◽  
Misaki Kaidan ◽  
Ruck Thawonmas

Abstract This paper investigates the integration of a surrogate-assisted multi-objective evolutionary algorithm (MOEA) and a parallel computation scheme to reduce the computing time until obtaining the optimal solutions in evolutionary algorithms (EAs). A surrogate-assisted MOEA solves multi-objective optimization problems while estimating the evaluation of solutions with a surrogate function. A surrogate function is produced by a machine learning model. This paper uses an extreme learning surrogate-assisted MOEA/D (ELMOEA/D), which utilizes one of the well-known MOEA algorithms, MOEA/D, and a machine learning technique, extreme learning machine (ELM). A parallelization of MOEA, on the other hand, evaluates solutions in parallel on multiple computing nodes to accelerate the optimization process. We consider a synchronous and an asynchronous parallel MOEA as a master-slave parallelization scheme for ELMOEA/D. We carry out an experiment with multi-objective optimization problems to compare the synchronous parallel ELMOEA/D with the asynchronous parallel ELMOEA/D. In the experiment, we simulate two settings of the evaluation time of solutions. One determines the evaluation time of solutions by the normal distribution with different variances. On the other hand, another evaluation time correlates to the objective function value. We compare the quality of solutions obtained by the parallel ELMOEA/D variants within a particular computing time. The experimental results show that the parallelization of ELMOEA/D significantly reduces the computational time. In addition, the integration of ELMOEA/D with the asynchronous parallelization scheme obtains higher quality of solutions quicker than the synchronous parallel ELMOEA/D.


Sign in / Sign up

Export Citation Format

Share Document