ESCVAD: An Energy Saving Routing Protocol Based on Voronoi Adaptive Clustering for Wireless Sensor Networks

Author(s):  
Ning Ma ◽  
Hang Zhang ◽  
Hang Hu ◽  
Yuan Qin



2012 ◽  
Vol 463-464 ◽  
pp. 261-265
Author(s):  
Fei Hui ◽  
Xiao Le Wang ◽  
Xin Shi

In this paper, hazardous materials transportation monitoring system is designed, implemented, and tested using Wireless Sensor Networks (WSNs). According to energy consumption and response time during clustering of Wireless Sensor Networks LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, we proposed STATIC-LEACH routing protocol based on static clustering, it can effectively reduce energy consumption of the wireless sensor nodes and reduce network latency of cluster. With WSN and GSM/GPRS, low cost and easy deployment remote monitoring is possible without interfering with the operation of the transportation.



2018 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sayed Seno ◽  
Doaa Abd Ali ◽  
Mohammed Mohammed

Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muhammad Fahad Mukhtar ◽  
Muhammad Shiraz ◽  
Qaisar Shaheen ◽  
Kamran Ahsan ◽  
Rizwan Akhtar ◽  
...  

Wireless sensor networks (WSNs) are employed for different applications for the reason of small-sized and low-cost sensor nodes. However, several challenges that include a low powered battery of the sensor nodes restrict their functionality. Therefore, saving energy in the routing process to extend network life is a serious concern while deploying applications on WSN. To this end, the key technology is clustering, which helps maximize scalability and network lifecycle. Base station (BS) collects data, aggregates it, and extracts the required information. To obtain the maximum outcome, the lifetime of the network is maximized by the use of different techniques and protocols. Data transmissions consume most of the network energy, and the transmissions over normal ranges require less energy as compared to transmissions over long ranges. Moreover, the nodes closer to the BS deplete their energy faster as compared to distant nodes because of traffic overload. The proposed protocol is aimed at reducing energy consumption and increasing the network lifetime. For this purpose, the network is divided into two regions: region 1 closer to the BS communicating directly, whereas region 2 farther away from the BS having routing nodes to communicate with the BS. Routing nodes do not take part in sensing function but will only move in region 2 collecting data and forwarding it to BS. MATLAB is used as the simulation tool for evaluation, and the results are compared with the existing optimized region-based efficient routing (AORED) and low-energy adaptive clustering hierarchical protocol (LEACH) techniques. The comparison showed that energy conservation and lifetime increased by 15%, and throughput is increased by more than 5% approximately.



Author(s):  
Wassim Jerbi ◽  
Abderrahmen Guermazi ◽  
Hafedh Trabelsi

The optimum use of coverage in wireless sensor networks (WSNs) is very important. The hierarchical routing protocol LEACH (Low Energy Adaptive Clustering Hierarchy) is referred to as the basic algorithm of distributed clustering protocols. LEACH allows clusters formation. Each cluster has a leader called Cluster Head (CH). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node join a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus several sensor nodes cannot reach any CH. As a result, the remaining part of the controlled field will not be covered; some sensor nodes will be outside the network. To solve this problem, the authors propose O-LEACH (Orphan Low Energy Adaptive Clustering Hierarchy), a routing protocol that takes into account the orphan nodes. O-LEACH presents two scenarios, a gateway and sub cluster that allow the joining of orphan nodes.



Sign in / Sign up

Export Citation Format

Share Document