scholarly journals Cylindrical Grating Projection by Single-Shot Normal Exposure of a Radial Phase Mask

2012 ◽  
Vol 4 (4) ◽  
pp. 1170-1177 ◽  
Author(s):  
S. Tonchev ◽  
Y. Jourlin ◽  
S. Reynaud ◽  
O. Parriaux
Keyword(s):  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyrollos Yanny ◽  
Nick Antipa ◽  
William Liberti ◽  
Sam Dehaeck ◽  
Kristina Monakhova ◽  
...  

Abstract Miniature fluorescence microscopes are a standard tool in systems biology. However, widefield miniature microscopes capture only 2D information, and modifications that enable 3D capabilities increase the size and weight and have poor resolution outside a narrow depth range. Here, we achieve the 3D capability by replacing the tube lens of a conventional 2D Miniscope with an optimized multifocal phase mask at the objective’s aperture stop. Placing the phase mask at the aperture stop significantly reduces the size of the device, and varying the focal lengths enables a uniform resolution across a wide depth range. The phase mask encodes the 3D fluorescence intensity into a single 2D measurement, and the 3D volume is recovered by solving a sparsity-constrained inverse problem. We provide methods for designing and fabricating the phase mask and an efficient forward model that accounts for the field-varying aberrations in miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams, achieving 2.76 μm lateral, and 15 μm axial resolution across most of the 900 × 700 × 390 μm3 volume at 40 volumes per second. The performance is validated experimentally on resolution targets, dynamic biological samples, and mouse brain tissue. Compared with existing miniature single-shot volume-capture implementations, our system is smaller and lighter and achieves a more than 2× better lateral and axial resolution throughout a 10× larger usable depth range. Our microscope design provides single-shot 3D imaging for applications where a compact platform matters, such as volumetric neural imaging in freely moving animals and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.


2016 ◽  
Author(s):  
L. Berthod ◽  
F. Vocanson ◽  
M. Langlet ◽  
C. Veillas ◽  
S. Reynaud ◽  
...  
Keyword(s):  

Author(s):  
Simran Agarwal ◽  
Romuald Jolivot ◽  
Waleed S. Mohammed

In the recent years, many different techniques and algorithms have been devised to design diffractive optical elements (DOE’s) for the purpose of beam shaping. This paper demonstrates an approach to realise a 3-D printed radial phase mask to be used in beam shaping to achieve a beam profile closer to the flattop. An iterative algorithm approach is employed to simulate the phase masks in greyscale and subsequently into STL format. These 3-D printed masks are used as an optical element and characterised using an experimental setup. The images of the light after the characterisation are examined and compared with the simulated results. Therefore, this method reduces the complexity as 3-D printing the masks eliminates the need for fabrication, processing time and number of components necessary to obtain a flattop beam profile.


2021 ◽  
Vol 119 (1) ◽  
pp. 011105
Author(s):  
Zhi Qiao ◽  
Xianbo Shi ◽  
Michael J. Wojcik ◽  
Luca Rebuffi ◽  
Lahsen Assoufid

2008 ◽  
Author(s):  
Yuankun Lin ◽  
Ahmad Harb ◽  
Daniel Rodriguez ◽  
Karen Lozano ◽  
Di Xu ◽  
...  

2004 ◽  
pp. 373-380 ◽  
Author(s):  
Timothy D. Solberg ◽  
Steven J. Goetsch ◽  
Michael T. Selch ◽  
William Melega ◽  
Goran Lacan ◽  
...  

Object. The purpose of this work was to investigate the targeting and dosimetric characteristics of a linear accelerator (LINAC) system dedicated for stereotactic radiosurgery compared with those of a commercial gamma knife (GK) unit. Methods. A phantom was rigidly affixed within a Leksell stereotactic frame and axial computerized tomography scans were obtained using an appropriate stereotactic localization device. Treatment plans were performed, film was inserted into a recessed area, and the phantom was positioned and treated according to each treatment plan. In the case of the LINAC system, four 140° arcs, spanning ± 60° of couch rotation, were used. In the case of the GK unit, all 201 sources were left unplugged. Radiation was delivered using 3- and 8-mm LINAC collimators and 4- and 8-mm collimators of the GK unit. Targeting ability was investigated independently on the dedicated LINAC by using a primate model. Measured 50% spot widths for multisource, single-shot radiation exceeded nominal values in all cases by 38 to 70% for the GK unit and 11 to 33% for the LINAC system. Measured offsets were indicative of submillimeter targeting precision on both devices. In primate studies, the appearance of an magnetic resonance imaging—enhancing lesion coincided with the intended target. Conclusions. Radiosurgery performed using the 3-mm collimator of the dedicated LINAC exhibited characteristics that compared favorably with those of a dedicated GK unit. Overall targeting accuracy in the submillimeter range can be achieved, and dose distributions with sharp falloff can be expected for both devices.


Sign in / Sign up

Export Citation Format

Share Document