Waveform Design for Fair Wireless Power Transfer With Multiple Energy Harvesting Devices

2019 ◽  
Vol 37 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Kyeong-Won Kim ◽  
Hyun-Suk Lee ◽  
Jang-Won Lee
Telecom ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 96-113
Author(s):  
Pavlos Doanis ◽  
Achilles Boursianis ◽  
Julien Huillery ◽  
Arnaud Bréard ◽  
Yvan Duroc ◽  
...  

The technique of transmitting multi-tone signals in a radiative Wireless Power Transfer (WPT) system can significantly increase its end-to-end power efficiency. The optimization problem in this system is to tune the transmission according to the receiver rectenna’s nonlinear behavior and the Channel State Information (CSI). This is a non-convex problem that has been previously addressed by Sequential Convex Programming (SCP) algorithms. Nonetheless, SCP algorithms do not always attain globally optimal solutions. To this end, in this paper, we evaluate a set of Evolutionary Algorithms (EAs) with several characteristics. The performance of the optimized multi-tone transmission signals in a WPT system is assessed by means of numerical simulations, utilizing a simplified Single Input Single Output (SISO) model. From the model evaluation, we can deduce that EAs can be successfully applied to the waveform design optimization problem. Moreover, from the presented results, we can derive that EAs can obtain the optimal solutions in the tested cases.


2019 ◽  
Vol 26 (4) ◽  
pp. 163-169 ◽  
Author(s):  
Jun Huang ◽  
Yide Zhou ◽  
Zhaolong Ning ◽  
Hamid Gharavi

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 681 ◽  
Author(s):  
Usman Raza ◽  
Abdul Salam

Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic (EM)- and Magnetic Induction (MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture.


Sign in / Sign up

Export Citation Format

Share Document