A Modified SIW Re-entrant Microfluidic Microwave Sensor for Characterizing Complex Permittivity of Liquids

2021 ◽  
pp. 1-1
Author(s):  
Yukang Chen ◽  
Jie Huang ◽  
Yuhan Xiang ◽  
Linglong Fu ◽  
Wenwen Gu ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


Author(s):  
Luqman Ali ◽  
Cong Wang ◽  
Fan-Yi Meng ◽  
Kishor Kumar Adhikari ◽  
Yu-Chen Wei ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2099
Author(s):  
Roberto Olmi ◽  
Saverio Priori ◽  
Alberto Toccafondi ◽  
Federico Puggelli

In this paper, the theory behind the design of a microwave sensor for the accurate measurement of firn complex permittivity is presented. This class of microwave sensors, based on the open-coaxial re-entrant cavity method, is specifically designed to measure, by means of a simple and quick procedure, the complex permittivity profile of low loss materials. A calibration procedure is introduced to derive the complex permittivity of the material under measurement (MUM). Two specimens of this class of microwave sensors have been realized to sample the complex permittivity profile of a 106-m long ice core drilled from the Antarctic plateau at Concordia Station. The preliminary results of the on site measurement campaign are reported, showing very good agreement with theoretical models available in the literature.


2016 ◽  
Vol 58 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
Aakriti Raj ◽  
Abhishek Kumar Jha ◽  
M. Arif Hussain Ansari ◽  
M. Jaleel Akhtar ◽  
Sidhartha Panda

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3057
Author(s):  
Luqman Ali ◽  
Cong Wang ◽  
Inam Ullah ◽  
Adnan Yousaf ◽  
Wali Ullah Khan ◽  
...  

This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.


Sign in / Sign up

Export Citation Format

Share Document