scholarly journals Complex Permittivity Characterization of Liquid Samples Based on a Split Ring Resonator (SRR)

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.

2020 ◽  
Author(s):  
Ahmed Javed ◽  
Ali Arif ◽  
Muhammad Zubair ◽  
Muhammad Qasim Mehmood ◽  
Kashif Riaz

<p>We propose a low-cost, easy-to-fabricate, contactless microwave sensor for dielectric characterization of liquids. The design of the proposed sensor is based on a multiple complementary split-ring resonator (MCSRR) fabricated on a low-cost FR-4 substrate. A glass capillary tube having an inner diameter of 0.008λ<sub>0</sub> is inserted in the high electric field region of the MCSRR to carry the liquid under test. The sensor is designed to operate at a resonant frequency of 2.45GHz for an empty tube and shifted resonant peaks are utilized for the dielectric characterization of different liquids. The maximum observed shifts in resonant frequency and Q factor are up to 400MHz and 31, respectively. The numerically established relations are experimentally verified through fabricated sensor for various binary mixtures of water and ethanol. The percentage errors between the calculated and reference permittivity of different samples are noticed to be less than 5%. The proposed device promises to be a cost-effective and convenient solution for accurate dielectric characterization of liquids and their binary aqueous solutions.<b></b></p>


2020 ◽  
Author(s):  
Ahmed Javed ◽  
Ali Arif ◽  
Muhammad Zubair ◽  
Muhammad Qasim Mehmood ◽  
Kashif Riaz

<p>We propose a low-cost, easy-to-fabricate, contactless microwave sensor for dielectric characterization of liquids. The design of the proposed sensor is based on a multiple complementary split-ring resonator (MCSRR) fabricated on a low-cost FR-4 substrate. A glass capillary tube having an inner diameter of 0.008λ<sub>0</sub> is inserted in the high electric field region of the MCSRR to carry the liquid under test. The sensor is designed to operate at a resonant frequency of 2.45GHz for an empty tube and shifted resonant peaks are utilized for the dielectric characterization of different liquids. The maximum observed shifts in resonant frequency and Q factor are up to 400MHz and 31, respectively. The numerically established relations are experimentally verified through fabricated sensor for various binary mixtures of water and ethanol. The percentage errors between the calculated and reference permittivity of different samples are noticed to be less than 5%. The proposed device promises to be a cost-effective and convenient solution for accurate dielectric characterization of liquids and their binary aqueous solutions.<b></b></p>


2021 ◽  
Vol 2118 (1) ◽  
pp. 012004
Author(s):  
J Zapata-Londoño ◽  
F Umaña-Idárraga ◽  
J Morales-Guerra ◽  
S Arias-Gómez ◽  
C Valencia-Balvin ◽  
...  

Abstract In this work, we propose a microwave sensor that allows the characterization of dielectric materials based on a differential configuration. A microstrip permittivity sensor of the surrounding material is proposed using a split ring-resonator to measure differentially. The geometry was optimized and was numerically analyzed using CST STUDIO. The numerical analysis of the metamaterial unit cells is carried out first, to determine the operating band. After that, the metamaterial cell was employed to design the differential microstrip permittivity sensor. The obtained results reveal that the proposed sensor has the capability to characterize different materials whose relative dielectric permittivity’s are in the range of 9.8 to 80 with great performance. The device has a total size of 86 mm × 60 mm and operates around 3 GHz. In this band, the sensor reaches a sensibility of 2.89 MHz and a Q-factor of 70.15. Thus, this work shows a compact, reusable, label-free, and non-destructive microwave sensing device and paves the way for high accuracy sensing of the dielectric properties of different materials due to its high- Q-factor as well as high sensitivity.


2021 ◽  
Vol 36 (7) ◽  
pp. 922-927
Author(s):  
Hong-Yi Gan ◽  
Wen-Sheng Zhao ◽  
Da-Wei Wang ◽  
Jing Wang ◽  
Qi Liu ◽  
...  

This paper presents an active microwave sensor for the characterization of dielectric materials. The sensor is consisted of a microstrip complementary split-ring resonator (MCSRR) structure and an active feedback loop. The loop uses an amplifier to generate negative resistance to compensate the resonator’s loss and increase the loaded quality factor. The developed sensor possesses the advantages of high quality factor, ultra-small electrical size, and high sensitivity. A prototype of the sensor is fabricated and measured for validation.


2020 ◽  
Vol 13 (2) ◽  
pp. 74-79
Author(s):  
Ahmed Adnan Wahhab ◽  
Ali A. Abduljabar ◽  
Hayder Jawad Albattat

Stopband split ring resonator (SSRR) is presented in this paper for measuring complex permittivity of liquid with different position of microfluidic channel operates at resonant frequency of 1 GHz. The sensor was fabricated and microfluidic channel is located in the gap groove with two different positions of the carrier where the electric field is as large as possible.  The sensor has been tested with several solvents to verify its sensitivity where the electric field interacts with the liquid filled in a quartz tube and hence alter the SRR behavior. The electromagnetic properties (complex permittivity) of the solvent can be extracted from shift in the resonant frequency of the resonator due to perturbation phenomenon.


2016 ◽  
Vol 58 (9) ◽  
pp. 2106-2110 ◽  
Author(s):  
Rammah A. Alahnomi ◽  
Z. Zakaria ◽  
E. Ruslan ◽  
Amyrul Azuan Mohd Bahar. ◽  
S. R. Ab Rashid

Author(s):  
Luqman Ali ◽  
Cong Wang ◽  
Fan-Yi Meng ◽  
Kishor Kumar Adhikari ◽  
Yu-Chen Wei ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Niloofar Pejman ◽  
Soheil Hashemi ◽  
Ali Abdolali ◽  
Majid Tayarani ◽  
Sara Moinzad

Sign in / Sign up

Export Citation Format

Share Document