Active Cues Collection and Integration for Building Extraction With High-Resolution Color Remote Sensing Imagery

Author(s):  
Lechuan Hao ◽  
Ye Zhang ◽  
Zhimin Cao
Author(s):  
Yongtao Yu ◽  
Chao Liu ◽  
Junyong Gao ◽  
Shenghua Jin ◽  
Xiaoling Jiang ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3814
Author(s):  
Fang Fang ◽  
Kaishun Wu ◽  
Yuanyuan Liu ◽  
Shengwen Li ◽  
Bo Wan ◽  
...  

Building instances extraction is an essential task for surveying and mapping. Challenges still exist in extracting building instances from high-resolution remote sensing imagery mainly because of complex structures, variety of scales, and interconnected buildings. This study proposes a coarse-to-fine contour optimization network to improve the performance of building instance extraction. Specifically, the network contains two special sub-networks: attention-based feature pyramid sub-network (AFPN) and coarse-to-fine contour sub-network. The former sub-network introduces channel attention into each layer of the original feature pyramid network (FPN) to improve the identification of small buildings, and the latter is designed to accurately extract building contours via two cascaded contour optimization learning. Furthermore, the whole network is jointly optimized by multiple losses, that is, a contour loss, a classification loss, a box regression loss and a general mask loss. Experimental results on three challenging building extraction datasets demonstrated that the proposed method outperformed the state-of-the-art methods’ accuracy and quality of building contours.


2019 ◽  
Vol 11 (20) ◽  
pp. 2380 ◽  
Author(s):  
Liu ◽  
Luo ◽  
Huang ◽  
Hu ◽  
Sun ◽  
...  

Deep convolutional neural networks have promoted significant progress in building extraction from high-resolution remote sensing imagery. Although most of such work focuses on modifying existing image segmentation networks in computer vision, we propose a new network in this paper, Deep Encoding Network (DE-Net), that is designed for the very problem based on many lately introduced techniques in image segmentation. Four modules are used to construct DE-Net: the inceptionstyle downsampling modules combining a striding convolution layer and a max-pooling layer, the encoding modules comprising six linear residual blocks with a scaled exponential linear unit (SELU) activation function, the compressing modules reducing the feature channels, and a densely upsampling module that enables the network to encode spatial information inside feature maps. Thus, DE-Net achieves stateoftheart performance on the WHU Building Dataset in recall, F1-Score, and intersection over union (IoU) metrics without pretraining. It also outperformed several segmentation networks in our self-built Suzhou Satellite Building Dataset. The experimental results validate the effectiveness of DE-Net on building extraction from aerial imagery and satellite imagery. It also suggests that given enough training data, designing and training a network from scratch may excel fine-tuning models pre-trained on datasets unrelated to building extraction.


Sign in / Sign up

Export Citation Format

Share Document